mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
Dynamic normalization layer selection (#7392)
* Dynamic normalization layer selection Based on actual available layers. Torch 1.7 compatible, resolves https://github.com/ultralytics/yolov5/issues/7381 * Update train.py
This commit is contained in:
parent
fa569cdae5
commit
4bb7eb8b84
2
train.py
2
train.py
@ -151,7 +151,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
|
||||
LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
|
||||
|
||||
g = [], [], [] # optimizer parameter groups
|
||||
bn = nn.BatchNorm2d, nn.LazyBatchNorm2d, nn.GroupNorm, nn.InstanceNorm2d, nn.LazyInstanceNorm2d, nn.LayerNorm
|
||||
bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d()
|
||||
for v in model.modules():
|
||||
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias
|
||||
g[2].append(v.bias)
|
||||
|
Loading…
x
Reference in New Issue
Block a user