EarlyStopper updates (#4679)
parent
f64fab5825
commit
548745181a
6
train.py
6
train.py
|
@ -344,7 +344,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||
# mAP
|
||||
callbacks.on_train_epoch_end(epoch=epoch)
|
||||
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
|
||||
final_epoch = epoch + 1 == epochs
|
||||
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
|
||||
if not noval or final_epoch: # Calculate mAP
|
||||
results, maps, _ = val.run(data_dict,
|
||||
batch_size=batch_size // WORLD_SIZE * 2,
|
||||
|
@ -384,7 +384,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||
callbacks.on_model_save(last, epoch, final_epoch, best_fitness, fi)
|
||||
|
||||
# Stop Single-GPU
|
||||
if stopper(epoch=epoch, fitness=fi):
|
||||
if RANK == -1 and stopper(epoch=epoch, fitness=fi):
|
||||
break
|
||||
|
||||
# Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576
|
||||
|
@ -462,7 +462,7 @@ def parse_opt(known=False):
|
|||
parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
|
||||
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
|
||||
parser.add_argument('--freeze', type=int, default=0, help='Number of layers to freeze. backbone=10, all=24')
|
||||
parser.add_argument('--patience', type=int, default=30, help='EarlyStopping patience (epochs)')
|
||||
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
|
||||
opt = parser.parse_known_args()[0] if known else parser.parse_args()
|
||||
return opt
|
||||
|
||||
|
|
|
@ -298,13 +298,16 @@ class EarlyStopping:
|
|||
def __init__(self, patience=30):
|
||||
self.best_fitness = 0.0 # i.e. mAP
|
||||
self.best_epoch = 0
|
||||
self.patience = patience # epochs to wait after fitness stops improving to stop
|
||||
self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop
|
||||
self.possible_stop = False # possible stop may occur next epoch
|
||||
|
||||
def __call__(self, epoch, fitness):
|
||||
if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training
|
||||
self.best_epoch = epoch
|
||||
self.best_fitness = fitness
|
||||
stop = (epoch - self.best_epoch) >= self.patience # stop training if patience exceeded
|
||||
delta = epoch - self.best_epoch # epochs without improvement
|
||||
self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch
|
||||
stop = delta >= self.patience # stop training if patience exceeded
|
||||
if stop:
|
||||
LOGGER.info(f'EarlyStopping patience {self.patience} exceeded, stopping training.')
|
||||
return stop
|
||||
|
|
Loading…
Reference in New Issue