parent
9c6732f61c
commit
587c4b4b81
|
@ -30,7 +30,7 @@ def autopad(k, p=None): # kernel, padding
|
|||
|
||||
|
||||
def DWConv(c1, c2, k=1, s=1, act=True):
|
||||
# Depth-wise convolution
|
||||
# Depth-wise convolution function
|
||||
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
|
||||
|
||||
|
||||
|
@ -45,10 +45,17 @@ class Conv(nn.Module):
|
|||
def forward(self, x):
|
||||
return self.act(self.bn(self.conv(x)))
|
||||
|
||||
def fuseforward(self, x):
|
||||
def forward_fuse(self, x):
|
||||
return self.act(self.conv(x))
|
||||
|
||||
|
||||
class DWConvClass(Conv):
|
||||
# Depth-wise convolution class
|
||||
def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||||
super().__init__(c1, c2, k, s, act)
|
||||
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k), groups=math.gcd(c1, c2), bias=False)
|
||||
|
||||
|
||||
class TransformerLayer(nn.Module):
|
||||
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
|
||||
def __init__(self, c, num_heads):
|
||||
|
|
|
@ -72,7 +72,7 @@ class GhostBottleneck(nn.Module):
|
|||
|
||||
|
||||
class MixConv2d(nn.Module):
|
||||
# Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
|
||||
# Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
|
||||
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
|
||||
super().__init__()
|
||||
groups = len(k)
|
||||
|
|
|
@ -202,10 +202,10 @@ class Model(nn.Module):
|
|||
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
||||
LOGGER.info('Fusing layers... ')
|
||||
for m in self.model.modules():
|
||||
if type(m) is Conv and hasattr(m, 'bn'):
|
||||
if isinstance(m, (Conv, DWConvClass)) and hasattr(m, 'bn'):
|
||||
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
||||
delattr(m, 'bn') # remove batchnorm
|
||||
m.forward = m.fuseforward # update forward
|
||||
m.forward = m.forward_fuse # update forward
|
||||
self.info()
|
||||
return self
|
||||
|
||||
|
|
Loading…
Reference in New Issue