Train from `--data path/to/dataset.zip` feature (#4185)
* Train from `--data path/to/dataset.zip` feature * Update dataset_stats() * cleanup * cleanup2pull/4195/head
parent
3fef11706c
commit
5d66e48723
|
@ -1,6 +1,6 @@
|
|||
# YOLOv5 🚀 by Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0
|
||||
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/
|
||||
# Example usage: python train.py --data Argoverse_HD.yaml
|
||||
# Example usage: python train.py --data Argoverse.yaml
|
||||
# parent
|
||||
# ├── yolov5
|
||||
# └── datasets
|
|
@ -27,7 +27,7 @@ def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbo
|
|||
|
||||
from models.yolo import Model, attempt_load
|
||||
from utils.general import check_requirements, set_logging
|
||||
from utils.google_utils import attempt_download
|
||||
from utils.downloads import attempt_download
|
||||
from utils.torch_utils import select_device
|
||||
|
||||
file = Path(__file__).absolute()
|
||||
|
|
|
@ -5,7 +5,7 @@ import torch
|
|||
import torch.nn as nn
|
||||
|
||||
from models.common import Conv, DWConv
|
||||
from utils.google_utils import attempt_download
|
||||
from utils.downloads import attempt_download
|
||||
|
||||
|
||||
class CrossConv(nn.Module):
|
||||
|
|
11
train.py
11
train.py
|
@ -35,7 +35,7 @@ from utils.datasets import create_dataloader
|
|||
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
|
||||
strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
|
||||
check_requirements, print_mutation, set_logging, one_cycle, colorstr
|
||||
from utils.google_utils import attempt_download
|
||||
from utils.downloads import attempt_download
|
||||
from utils.loss import ComputeLoss
|
||||
from utils.plots import plot_labels, plot_evolution
|
||||
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
|
||||
|
@ -78,9 +78,9 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||
plots = not evolve # create plots
|
||||
cuda = device.type != 'cpu'
|
||||
init_seeds(1 + RANK)
|
||||
with open(data, encoding='ascii', errors='ignore') as f:
|
||||
data_dict = yaml.safe_load(f)
|
||||
|
||||
with torch_distributed_zero_first(RANK):
|
||||
data_dict = check_dataset(data) # check
|
||||
train_path, val_path = data_dict['train'], data_dict['val']
|
||||
nc = 1 if single_cls else int(data_dict['nc']) # number of classes
|
||||
names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
|
||||
assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
|
||||
|
@ -106,9 +106,6 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||
LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
|
||||
else:
|
||||
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
|
||||
with torch_distributed_zero_first(RANK):
|
||||
check_dataset(data_dict) # check
|
||||
train_path, val_path = data_dict['train'], data_dict['val']
|
||||
|
||||
# Freeze
|
||||
freeze = [] # parameter names to freeze (full or partial)
|
||||
|
|
|
@ -884,11 +884,11 @@ def verify_image_label(args):
|
|||
return [None, None, None, None, nm, nf, ne, nc, msg]
|
||||
|
||||
|
||||
def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False):
|
||||
def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profile=False, hub=False):
|
||||
""" Return dataset statistics dictionary with images and instances counts per split per class
|
||||
Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', verbose=True)
|
||||
Usage2: from utils.datasets import *; dataset_stats('../datasets/coco128.zip', verbose=True)
|
||||
|
||||
To run in parent directory: export PYTHONPATH="$PWD/yolov5"
|
||||
Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', autodownload=True)
|
||||
Usage2: from utils.datasets import *; dataset_stats('../datasets/coco128_with_yaml.zip')
|
||||
Arguments
|
||||
path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
|
||||
autodownload: Attempt to download dataset if not found locally
|
||||
|
@ -897,35 +897,42 @@ def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False):
|
|||
|
||||
def round_labels(labels):
|
||||
# Update labels to integer class and 6 decimal place floats
|
||||
return [[int(c), *[round(x, 6) for x in points]] for c, *points in labels]
|
||||
return [[int(c), *[round(x, 4) for x in points]] for c, *points in labels]
|
||||
|
||||
def unzip(path):
|
||||
# Unzip data.zip TODO: CONSTRAINT: path/to/abc.zip MUST unzip to 'path/to/abc/'
|
||||
if str(path).endswith('.zip'): # path is data.zip
|
||||
assert Path(path).is_file(), f'Error unzipping {path}, file not found'
|
||||
assert os.system(f'unzip -q {path} -d {path.parent}') == 0, f'Error unzipping {path}'
|
||||
data_dir = path.with_suffix('') # dataset directory
|
||||
return True, data_dir, list(data_dir.rglob('*.yaml'))[0] # zipped, data_dir, yaml_path
|
||||
dir = path.with_suffix('') # dataset directory
|
||||
return True, str(dir), next(dir.rglob('*.yaml')) # zipped, data_dir, yaml_path
|
||||
else: # path is data.yaml
|
||||
return False, None, path
|
||||
|
||||
def hub_ops(f, max_dim=1920):
|
||||
# HUB ops for 1 image 'f'
|
||||
im = Image.open(f)
|
||||
r = max_dim / max(im.height, im.width) # ratio
|
||||
if r < 1.0: # image too large
|
||||
im = im.resize((int(im.width * r), int(im.height * r)))
|
||||
im.save(im_dir / Path(f).name, quality=75) # save
|
||||
|
||||
zipped, data_dir, yaml_path = unzip(Path(path))
|
||||
with open(check_file(yaml_path), encoding='ascii', errors='ignore') as f:
|
||||
data = yaml.safe_load(f) # data dict
|
||||
if zipped:
|
||||
data['path'] = data_dir # TODO: should this be dir.resolve()?
|
||||
check_dataset(data, autodownload) # download dataset if missing
|
||||
nc = data['nc'] # number of classes
|
||||
stats = {'nc': nc, 'names': data['names']} # statistics dictionary
|
||||
hub_dir = Path(data['path'] + ('-hub' if hub else ''))
|
||||
stats = {'nc': data['nc'], 'names': data['names']} # statistics dictionary
|
||||
for split in 'train', 'val', 'test':
|
||||
if data.get(split) is None:
|
||||
stats[split] = None # i.e. no test set
|
||||
continue
|
||||
x = []
|
||||
dataset = LoadImagesAndLabels(data[split], augment=False, rect=True) # load dataset
|
||||
if split == 'train':
|
||||
cache_path = Path(dataset.label_files[0]).parent.with_suffix('.cache') # *.cache path
|
||||
dataset = LoadImagesAndLabels(data[split]) # load dataset
|
||||
for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'):
|
||||
x.append(np.bincount(label[:, 0].astype(int), minlength=nc))
|
||||
x.append(np.bincount(label[:, 0].astype(int), minlength=data['nc']))
|
||||
x = np.array(x) # shape(128x80)
|
||||
stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()},
|
||||
'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
|
||||
|
@ -933,10 +940,37 @@ def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False):
|
|||
'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in
|
||||
zip(dataset.img_files, dataset.labels)]}
|
||||
|
||||
# Save, print and return
|
||||
with open(cache_path.with_suffix('.json'), 'w') as f:
|
||||
if hub:
|
||||
im_dir = hub_dir / 'images'
|
||||
im_dir.mkdir(parents=True, exist_ok=True)
|
||||
for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.img_files), total=dataset.n, desc='HUB Ops'):
|
||||
pass
|
||||
|
||||
# Profile
|
||||
stats_path = hub_dir / 'stats.json'
|
||||
if profile:
|
||||
for _ in range(1):
|
||||
file = stats_path.with_suffix('.npy')
|
||||
t1 = time.time()
|
||||
np.save(file, stats)
|
||||
t2 = time.time()
|
||||
x = np.load(file, allow_pickle=True)
|
||||
print(f'stats.npy times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
|
||||
|
||||
file = stats_path.with_suffix('.json')
|
||||
t1 = time.time()
|
||||
with open(file, 'w') as f:
|
||||
json.dump(stats, f) # save stats *.json
|
||||
t2 = time.time()
|
||||
with open(file, 'r') as f:
|
||||
x = json.load(f) # load hyps dict
|
||||
print(f'stats.json times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
|
||||
|
||||
# Save, print and return
|
||||
if hub:
|
||||
print(f'Saving {stats_path.resolve()}...')
|
||||
with open(stats_path, 'w') as f:
|
||||
json.dump(stats, f) # save stats.json
|
||||
if verbose:
|
||||
print(json.dumps(stats, indent=2, sort_keys=False))
|
||||
# print(yaml.dump([stats], sort_keys=False, default_flow_style=False))
|
||||
return stats
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Google utils: https://cloud.google.com/storage/docs/reference/libraries
|
||||
# Download utils
|
||||
|
||||
import os
|
||||
import platform
|
||||
|
@ -115,6 +115,10 @@ def get_token(cookie="./cookie"):
|
|||
return line.split()[-1]
|
||||
return ""
|
||||
|
||||
|
||||
# Google utils: https://cloud.google.com/storage/docs/reference/libraries ----------------------------------------------
|
||||
#
|
||||
#
|
||||
# def upload_blob(bucket_name, source_file_name, destination_blob_name):
|
||||
# # Uploads a file to a bucket
|
||||
# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
|
|
@ -24,7 +24,7 @@ import torch
|
|||
import torchvision
|
||||
import yaml
|
||||
|
||||
from utils.google_utils import gsutil_getsize
|
||||
from utils.downloads import gsutil_getsize
|
||||
from utils.metrics import box_iou, fitness
|
||||
from utils.torch_utils import init_torch_seeds
|
||||
|
||||
|
@ -224,16 +224,30 @@ def check_file(file):
|
|||
|
||||
|
||||
def check_dataset(data, autodownload=True):
|
||||
# Download dataset if not found locally
|
||||
path = Path(data.get('path', '')) # optional 'path' field
|
||||
if path:
|
||||
# Download and/or unzip dataset if not found locally
|
||||
# Usage: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128_with_yaml.zip
|
||||
|
||||
# Download (optional)
|
||||
extract_dir = ''
|
||||
if isinstance(data, (str, Path)) and str(data).endswith('.zip'): # i.e. gs://bucket/dir/coco128.zip
|
||||
download(data, dir='../datasets', unzip=True, delete=False, curl=False, threads=1)
|
||||
data = next((Path('../datasets') / Path(data).stem).rglob('*.yaml'))
|
||||
extract_dir, autodownload = data.parent, False
|
||||
|
||||
# Read yaml (optional)
|
||||
if isinstance(data, (str, Path)):
|
||||
with open(data, encoding='ascii', errors='ignore') as f:
|
||||
data = yaml.safe_load(f) # dictionary
|
||||
|
||||
# Parse yaml
|
||||
path = extract_dir or Path(data.get('path') or '') # optional 'path' default to '.'
|
||||
for k in 'train', 'val', 'test':
|
||||
if data.get(k): # prepend path
|
||||
data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]]
|
||||
|
||||
assert 'nc' in data, "Dataset 'nc' key missing."
|
||||
if 'names' not in data:
|
||||
data['names'] = [str(i) for i in range(data['nc'])] # assign class names if missing
|
||||
data['names'] = [f'class{i}' for i in range(data['nc'])] # assign class names if missing
|
||||
train, val, test, s = [data.get(x) for x in ('train', 'val', 'test', 'download')]
|
||||
if val:
|
||||
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
|
||||
|
@ -256,13 +270,17 @@ def check_dataset(data, autodownload=True):
|
|||
else:
|
||||
raise Exception('Dataset not found.')
|
||||
|
||||
return data # dictionary
|
||||
|
||||
|
||||
def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1):
|
||||
# Multi-threaded file download and unzip function
|
||||
# Multi-threaded file download and unzip function, used in data.yaml for autodownload
|
||||
def download_one(url, dir):
|
||||
# Download 1 file
|
||||
f = dir / Path(url).name # filename
|
||||
if not f.exists():
|
||||
if Path(url).is_file(): # exists in current path
|
||||
Path(url).rename(f) # move to dir
|
||||
elif not f.exists():
|
||||
print(f'Downloading {url} to {f}...')
|
||||
if curl:
|
||||
os.system(f"curl -L '{url}' -o '{f}' --retry 9 -C -") # curl download, retry and resume on fail
|
||||
|
@ -286,7 +304,7 @@ def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1):
|
|||
pool.close()
|
||||
pool.join()
|
||||
else:
|
||||
for u in tuple(url) if isinstance(url, str) else url:
|
||||
for u in [url] if isinstance(url, (str, Path)) else url:
|
||||
download_one(u, dir)
|
||||
|
||||
|
||||
|
|
|
@ -100,7 +100,7 @@ class WandbLogger():
|
|||
"""
|
||||
|
||||
def __init__(self, opt, run_id, data_dict, job_type='Training'):
|
||||
'''
|
||||
"""
|
||||
- Initialize WandbLogger instance
|
||||
- Upload dataset if opt.upload_dataset is True
|
||||
- Setup trainig processes if job_type is 'Training'
|
||||
|
@ -111,7 +111,7 @@ class WandbLogger():
|
|||
data_dict (Dict) -- Dictionary conataining info about the dataset to be used
|
||||
job_type (str) -- To set the job_type for this run
|
||||
|
||||
'''
|
||||
"""
|
||||
# Pre-training routine --
|
||||
self.job_type = job_type
|
||||
self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run
|
||||
|
@ -157,7 +157,7 @@ class WandbLogger():
|
|||
self.data_dict = self.check_and_upload_dataset(opt)
|
||||
|
||||
def check_and_upload_dataset(self, opt):
|
||||
'''
|
||||
"""
|
||||
Check if the dataset format is compatible and upload it as W&B artifact
|
||||
|
||||
arguments:
|
||||
|
@ -165,7 +165,7 @@ class WandbLogger():
|
|||
|
||||
returns:
|
||||
Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
|
||||
'''
|
||||
"""
|
||||
assert wandb, 'Install wandb to upload dataset'
|
||||
config_path = self.log_dataset_artifact(check_file(opt.data),
|
||||
opt.single_cls,
|
||||
|
@ -176,7 +176,7 @@ class WandbLogger():
|
|||
return wandb_data_dict
|
||||
|
||||
def setup_training(self, opt, data_dict):
|
||||
'''
|
||||
"""
|
||||
Setup the necessary processes for training YOLO models:
|
||||
- Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
|
||||
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
|
||||
|
@ -188,7 +188,7 @@ class WandbLogger():
|
|||
|
||||
returns:
|
||||
data_dict (Dict) -- contains the updated info about the dataset to be used for training
|
||||
'''
|
||||
"""
|
||||
self.log_dict, self.current_epoch = {}, 0
|
||||
self.bbox_interval = opt.bbox_interval
|
||||
if isinstance(opt.resume, str):
|
||||
|
@ -224,7 +224,7 @@ class WandbLogger():
|
|||
return data_dict
|
||||
|
||||
def download_dataset_artifact(self, path, alias):
|
||||
'''
|
||||
"""
|
||||
download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX
|
||||
|
||||
arguments:
|
||||
|
@ -234,7 +234,7 @@ class WandbLogger():
|
|||
returns:
|
||||
(str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset
|
||||
is found otherwise returns (None, None)
|
||||
'''
|
||||
"""
|
||||
if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
|
||||
artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
|
||||
dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/"))
|
||||
|
@ -244,12 +244,12 @@ class WandbLogger():
|
|||
return None, None
|
||||
|
||||
def download_model_artifact(self, opt):
|
||||
'''
|
||||
"""
|
||||
download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX
|
||||
|
||||
arguments:
|
||||
opt (namespace) -- Commandline arguments for this run
|
||||
'''
|
||||
"""
|
||||
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
||||
model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
|
||||
assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
|
||||
|
@ -262,7 +262,7 @@ class WandbLogger():
|
|||
return None, None
|
||||
|
||||
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
|
||||
'''
|
||||
"""
|
||||
Log the model checkpoint as W&B artifact
|
||||
|
||||
arguments:
|
||||
|
@ -271,7 +271,7 @@ class WandbLogger():
|
|||
epoch (int) -- Current epoch number
|
||||
fitness_score (float) -- fitness score for current epoch
|
||||
best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
|
||||
'''
|
||||
"""
|
||||
model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
|
||||
'original_url': str(path),
|
||||
'epochs_trained': epoch + 1,
|
||||
|
@ -286,7 +286,7 @@ class WandbLogger():
|
|||
print("Saving model artifact on epoch ", epoch + 1)
|
||||
|
||||
def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
|
||||
'''
|
||||
"""
|
||||
Log the dataset as W&B artifact and return the new data file with W&B links
|
||||
|
||||
arguments:
|
||||
|
@ -298,10 +298,8 @@ class WandbLogger():
|
|||
|
||||
returns:
|
||||
the new .yaml file with artifact links. it can be used to start training directly from artifacts
|
||||
'''
|
||||
with open(data_file, encoding='ascii', errors='ignore') as f:
|
||||
data = yaml.safe_load(f) # data dict
|
||||
check_dataset(data)
|
||||
"""
|
||||
data = check_dataset(data_file) # parse and check
|
||||
nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
|
||||
names = {k: v for k, v in enumerate(names)} # to index dictionary
|
||||
self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(
|
||||
|
@ -330,17 +328,17 @@ class WandbLogger():
|
|||
return path
|
||||
|
||||
def map_val_table_path(self):
|
||||
'''
|
||||
"""
|
||||
Map the validation dataset Table like name of file -> it's id in the W&B Table.
|
||||
Useful for - referencing artifacts for evaluation.
|
||||
'''
|
||||
"""
|
||||
self.val_table_path_map = {}
|
||||
print("Mapping dataset")
|
||||
for i, data in enumerate(tqdm(self.val_table.data)):
|
||||
self.val_table_path_map[data[3]] = data[0]
|
||||
|
||||
def create_dataset_table(self, dataset, class_to_id, name='dataset'):
|
||||
'''
|
||||
"""
|
||||
Create and return W&B artifact containing W&B Table of the dataset.
|
||||
|
||||
arguments:
|
||||
|
@ -350,7 +348,7 @@ class WandbLogger():
|
|||
|
||||
returns:
|
||||
dataset artifact to be logged or used
|
||||
'''
|
||||
"""
|
||||
# TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
|
||||
artifact = wandb.Artifact(name=name, type="dataset")
|
||||
img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
|
||||
|
@ -382,14 +380,14 @@ class WandbLogger():
|
|||
return artifact
|
||||
|
||||
def log_training_progress(self, predn, path, names):
|
||||
'''
|
||||
"""
|
||||
Build evaluation Table. Uses reference from validation dataset table.
|
||||
|
||||
arguments:
|
||||
predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
||||
path (str): local path of the current evaluation image
|
||||
names (dict(int, str)): hash map that maps class ids to labels
|
||||
'''
|
||||
"""
|
||||
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
|
||||
box_data = []
|
||||
total_conf = 0
|
||||
|
@ -412,14 +410,14 @@ class WandbLogger():
|
|||
)
|
||||
|
||||
def val_one_image(self, pred, predn, path, names, im):
|
||||
'''
|
||||
"""
|
||||
Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel
|
||||
|
||||
arguments:
|
||||
pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
||||
predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class]
|
||||
path (str): local path of the current evaluation image
|
||||
'''
|
||||
"""
|
||||
if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact
|
||||
self.log_training_progress(predn, path, names)
|
||||
|
||||
|
@ -434,23 +432,23 @@ class WandbLogger():
|
|||
self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name))
|
||||
|
||||
def log(self, log_dict):
|
||||
'''
|
||||
"""
|
||||
save the metrics to the logging dictionary
|
||||
|
||||
arguments:
|
||||
log_dict (Dict) -- metrics/media to be logged in current step
|
||||
'''
|
||||
"""
|
||||
if self.wandb_run:
|
||||
for key, value in log_dict.items():
|
||||
self.log_dict[key] = value
|
||||
|
||||
def end_epoch(self, best_result=False):
|
||||
'''
|
||||
"""
|
||||
commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
|
||||
|
||||
arguments:
|
||||
best_result (boolean): Boolean representing if the result of this evaluation is best or not
|
||||
'''
|
||||
"""
|
||||
if self.wandb_run:
|
||||
with all_logging_disabled():
|
||||
if self.bbox_media_panel_images:
|
||||
|
@ -468,9 +466,9 @@ class WandbLogger():
|
|||
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
|
||||
|
||||
def finish_run(self):
|
||||
'''
|
||||
"""
|
||||
Log metrics if any and finish the current W&B run
|
||||
'''
|
||||
"""
|
||||
if self.wandb_run:
|
||||
if self.log_dict:
|
||||
with all_logging_disabled():
|
||||
|
|
4
val.py
4
val.py
|
@ -123,9 +123,7 @@ def run(data,
|
|||
# model = nn.DataParallel(model)
|
||||
|
||||
# Data
|
||||
with open(data, encoding='ascii', errors='ignore') as f:
|
||||
data = yaml.safe_load(f)
|
||||
check_dataset(data) # check
|
||||
data = check_dataset(data) # check
|
||||
|
||||
# Half
|
||||
half &= device.type != 'cpu' # half precision only supported on CUDA
|
||||
|
|
Loading…
Reference in New Issue