Print dataset scan only `if RANK in (-1, 0)` (#7337)
* Print dataset scan only `if RANK in (-1, 0)` * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>pull/7346/head
parent
676e10cf1a
commit
5f941a84ef
10
train.py
10
train.py
|
@ -316,7 +316,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
|
|||
train_loader.sampler.set_epoch(epoch)
|
||||
pbar = enumerate(train_loader)
|
||||
LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
|
||||
if RANK in [-1, 0]:
|
||||
if RANK in (-1, 0):
|
||||
pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
|
||||
optimizer.zero_grad()
|
||||
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
||||
|
@ -365,7 +365,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
|
|||
last_opt_step = ni
|
||||
|
||||
# Log
|
||||
if RANK in [-1, 0]:
|
||||
if RANK in (-1, 0):
|
||||
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
||||
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
|
||||
pbar.set_description(('%10s' * 2 + '%10.4g' * 5) %
|
||||
|
@ -379,7 +379,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
|
|||
lr = [x['lr'] for x in optimizer.param_groups] # for loggers
|
||||
scheduler.step()
|
||||
|
||||
if RANK in [-1, 0]:
|
||||
if RANK in (-1, 0):
|
||||
# mAP
|
||||
callbacks.run('on_train_epoch_end', epoch=epoch)
|
||||
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
|
||||
|
@ -440,7 +440,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
|
|||
|
||||
# end epoch ----------------------------------------------------------------------------------------------------
|
||||
# end training -----------------------------------------------------------------------------------------------------
|
||||
if RANK in [-1, 0]:
|
||||
if RANK in (-1, 0):
|
||||
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
|
||||
for f in last, best:
|
||||
if f.exists():
|
||||
|
@ -518,7 +518,7 @@ def parse_opt(known=False):
|
|||
|
||||
def main(opt, callbacks=Callbacks()):
|
||||
# Checks
|
||||
if RANK in [-1, 0]:
|
||||
if RANK in (-1, 0):
|
||||
print_args(vars(opt))
|
||||
check_git_status()
|
||||
check_requirements(exclude=['thop'])
|
||||
|
|
|
@ -36,6 +36,7 @@ HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
|||
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp' # include image suffixes
|
||||
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes
|
||||
BAR_FORMAT = '{l_bar}{bar:10}{r_bar}{bar:-10b}' # tqdm bar format
|
||||
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
||||
|
||||
# Get orientation exif tag
|
||||
for orientation in ExifTags.TAGS.keys():
|
||||
|
@ -454,7 +455,7 @@ class LoadImagesAndLabels(Dataset):
|
|||
|
||||
# Display cache
|
||||
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
|
||||
if exists:
|
||||
if exists and LOCAL_RANK in (-1, 0):
|
||||
d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt"
|
||||
tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=BAR_FORMAT) # display cache results
|
||||
if cache['msgs']:
|
||||
|
|
Loading…
Reference in New Issue