Print dataset scan only `if RANK in (-1, 0)` (#7337)

* Print dataset scan only `if RANK in (-1, 0)`

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
pull/7346/head
Glenn Jocher 2022-04-07 16:44:08 +02:00 committed by GitHub
parent 676e10cf1a
commit 5f941a84ef
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 7 additions and 6 deletions

View File

@ -316,7 +316,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
train_loader.sampler.set_epoch(epoch)
pbar = enumerate(train_loader)
LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
if RANK in [-1, 0]:
if RANK in (-1, 0):
pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
optimizer.zero_grad()
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
@ -365,7 +365,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
last_opt_step = ni
# Log
if RANK in [-1, 0]:
if RANK in (-1, 0):
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
pbar.set_description(('%10s' * 2 + '%10.4g' * 5) %
@ -379,7 +379,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
lr = [x['lr'] for x in optimizer.param_groups] # for loggers
scheduler.step()
if RANK in [-1, 0]:
if RANK in (-1, 0):
# mAP
callbacks.run('on_train_epoch_end', epoch=epoch)
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
@ -440,7 +440,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
# end epoch ----------------------------------------------------------------------------------------------------
# end training -----------------------------------------------------------------------------------------------------
if RANK in [-1, 0]:
if RANK in (-1, 0):
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
for f in last, best:
if f.exists():
@ -518,7 +518,7 @@ def parse_opt(known=False):
def main(opt, callbacks=Callbacks()):
# Checks
if RANK in [-1, 0]:
if RANK in (-1, 0):
print_args(vars(opt))
check_git_status()
check_requirements(exclude=['thop'])

View File

@ -36,6 +36,7 @@ HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp' # include image suffixes
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes
BAR_FORMAT = '{l_bar}{bar:10}{r_bar}{bar:-10b}' # tqdm bar format
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
# Get orientation exif tag
for orientation in ExifTags.TAGS.keys():
@ -454,7 +455,7 @@ class LoadImagesAndLabels(Dataset):
# Display cache
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
if exists:
if exists and LOCAL_RANK in (-1, 0):
d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt"
tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=BAR_FORMAT) # display cache results
if cache['msgs']: