Implement `@torch.no_grad()` decorator (#3312)
* `@torch.no_grad()` decorator * Update detect.pypull/3320/head
parent
73a92dc1b6
commit
61ea23c3fe
12
detect.py
12
detect.py
|
@ -14,6 +14,7 @@ from utils.plots import colors, plot_one_box
|
|||
from utils.torch_utils import select_device, load_classifier, time_synchronized
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def detect(opt):
|
||||
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
|
||||
save_img = not opt.nosave and not source.endswith('.txt') # save inference images
|
||||
|
@ -175,10 +176,9 @@ if __name__ == '__main__':
|
|||
print(opt)
|
||||
check_requirements(exclude=('tensorboard', 'pycocotools', 'thop'))
|
||||
|
||||
with torch.no_grad():
|
||||
if opt.update: # update all models (to fix SourceChangeWarning)
|
||||
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
|
||||
detect(opt=opt)
|
||||
strip_optimizer(opt.weights)
|
||||
else:
|
||||
if opt.update: # update all models (to fix SourceChangeWarning)
|
||||
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
|
||||
detect(opt=opt)
|
||||
strip_optimizer(opt.weights)
|
||||
else:
|
||||
detect(opt=opt)
|
||||
|
|
28
test.py
28
test.py
|
@ -18,6 +18,7 @@ from utils.plots import plot_images, output_to_target, plot_study_txt
|
|||
from utils.torch_utils import select_device, time_synchronized
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def test(data,
|
||||
weights=None,
|
||||
batch_size=32,
|
||||
|
@ -105,22 +106,21 @@ def test(data,
|
|||
targets = targets.to(device)
|
||||
nb, _, height, width = img.shape # batch size, channels, height, width
|
||||
|
||||
with torch.no_grad():
|
||||
# Run model
|
||||
t = time_synchronized()
|
||||
out, train_out = model(img, augment=augment) # inference and training outputs
|
||||
t0 += time_synchronized() - t
|
||||
# Run model
|
||||
t = time_synchronized()
|
||||
out, train_out = model(img, augment=augment) # inference and training outputs
|
||||
t0 += time_synchronized() - t
|
||||
|
||||
# Compute loss
|
||||
if compute_loss:
|
||||
loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
|
||||
# Compute loss
|
||||
if compute_loss:
|
||||
loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
|
||||
|
||||
# Run NMS
|
||||
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
|
||||
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
|
||||
t = time_synchronized()
|
||||
out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
|
||||
t1 += time_synchronized() - t
|
||||
# Run NMS
|
||||
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
|
||||
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
|
||||
t = time_synchronized()
|
||||
out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
|
||||
t1 += time_synchronized() - t
|
||||
|
||||
# Statistics per image
|
||||
for si, pred in enumerate(out):
|
||||
|
|
Loading…
Reference in New Issue