Improve docstrings and run names (#4174)
parent
0ad6301c96
commit
63a1971e31
|
@ -57,7 +57,7 @@ class Loggers():
|
|||
assert 'wandb' in self.include and wandb
|
||||
run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume else None
|
||||
self.opt.hyp = self.hyp # add hyperparameters
|
||||
self.wandb = WandbLogger(self.opt, s.stem, run_id, self.data_dict)
|
||||
self.wandb = WandbLogger(self.opt, run_id, self.data_dict)
|
||||
except:
|
||||
self.wandb = None
|
||||
|
||||
|
|
|
@ -99,7 +99,19 @@ class WandbLogger():
|
|||
https://docs.wandb.com/guides/integrations/yolov5
|
||||
"""
|
||||
|
||||
def __init__(self, opt, name, run_id, data_dict, job_type='Training'):
|
||||
def __init__(self, opt, run_id, data_dict, job_type='Training'):
|
||||
'''
|
||||
- Initialize WandbLogger instance
|
||||
- Upload dataset if opt.upload_dataset is True
|
||||
- Setup trainig processes if job_type is 'Training'
|
||||
|
||||
arguments:
|
||||
opt (namespace) -- Commandline arguments for this run
|
||||
run_id (str) -- Run ID of W&B run to be resumed
|
||||
data_dict (Dict) -- Dictionary conataining info about the dataset to be used
|
||||
job_type (str) -- To set the job_type for this run
|
||||
|
||||
'''
|
||||
# Pre-training routine --
|
||||
self.job_type = job_type
|
||||
self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run
|
||||
|
@ -129,7 +141,7 @@ class WandbLogger():
|
|||
resume="allow",
|
||||
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
|
||||
entity=opt.entity,
|
||||
name=name,
|
||||
name=opt.name if opt.name != 'exp' else None,
|
||||
job_type=job_type,
|
||||
id=run_id,
|
||||
allow_val_change=True) if not wandb.run else wandb.run
|
||||
|
@ -145,6 +157,15 @@ class WandbLogger():
|
|||
self.data_dict = self.check_and_upload_dataset(opt)
|
||||
|
||||
def check_and_upload_dataset(self, opt):
|
||||
'''
|
||||
Check if the dataset format is compatible and upload it as W&B artifact
|
||||
|
||||
arguments:
|
||||
opt (namespace)-- Commandline arguments for current run
|
||||
|
||||
returns:
|
||||
Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
|
||||
'''
|
||||
assert wandb, 'Install wandb to upload dataset'
|
||||
config_path = self.log_dataset_artifact(check_file(opt.data),
|
||||
opt.single_cls,
|
||||
|
@ -155,6 +176,19 @@ class WandbLogger():
|
|||
return wandb_data_dict
|
||||
|
||||
def setup_training(self, opt, data_dict):
|
||||
'''
|
||||
Setup the necessary processes for training YOLO models:
|
||||
- Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
|
||||
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
|
||||
- Setup log_dict, initialize bbox_interval
|
||||
|
||||
arguments:
|
||||
opt (namespace) -- commandline arguments for this run
|
||||
data_dict (Dict) -- Dataset dictionary for this run
|
||||
|
||||
returns:
|
||||
data_dict (Dict) -- contains the updated info about the dataset to be used for training
|
||||
'''
|
||||
self.log_dict, self.current_epoch = {}, 0
|
||||
self.bbox_interval = opt.bbox_interval
|
||||
if isinstance(opt.resume, str):
|
||||
|
@ -185,12 +219,22 @@ class WandbLogger():
|
|||
self.val_table = self.val_artifact.get("val")
|
||||
if self.val_table_path_map is None:
|
||||
self.map_val_table_path()
|
||||
wandb.log({"validation dataset": self.val_table})
|
||||
if opt.bbox_interval == -1:
|
||||
self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
|
||||
return data_dict
|
||||
|
||||
def download_dataset_artifact(self, path, alias):
|
||||
'''
|
||||
download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX
|
||||
|
||||
arguments:
|
||||
path -- path of the dataset to be used for training
|
||||
alias (str)-- alias of the artifact to be download/used for training
|
||||
|
||||
returns:
|
||||
(str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset
|
||||
is found otherwise returns (None, None)
|
||||
'''
|
||||
if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
|
||||
artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
|
||||
dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/"))
|
||||
|
@ -200,6 +244,12 @@ class WandbLogger():
|
|||
return None, None
|
||||
|
||||
def download_model_artifact(self, opt):
|
||||
'''
|
||||
download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX
|
||||
|
||||
arguments:
|
||||
opt (namespace) -- Commandline arguments for this run
|
||||
'''
|
||||
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
||||
model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
|
||||
assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
|
||||
|
@ -212,6 +262,16 @@ class WandbLogger():
|
|||
return None, None
|
||||
|
||||
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
|
||||
'''
|
||||
Log the model checkpoint as W&B artifact
|
||||
|
||||
arguments:
|
||||
path (Path) -- Path of directory containing the checkpoints
|
||||
opt (namespace) -- Command line arguments for this run
|
||||
epoch (int) -- Current epoch number
|
||||
fitness_score (float) -- fitness score for current epoch
|
||||
best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
|
||||
'''
|
||||
model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
|
||||
'original_url': str(path),
|
||||
'epochs_trained': epoch + 1,
|
||||
|
@ -226,6 +286,19 @@ class WandbLogger():
|
|||
print("Saving model artifact on epoch ", epoch + 1)
|
||||
|
||||
def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
|
||||
'''
|
||||
Log the dataset as W&B artifact and return the new data file with W&B links
|
||||
|
||||
arguments:
|
||||
data_file (str) -- the .yaml file with information about the dataset like - path, classes etc.
|
||||
single_class (boolean) -- train multi-class data as single-class
|
||||
project (str) -- project name. Used to construct the artifact path
|
||||
overwrite_config (boolean) -- overwrites the data.yaml file if set to true otherwise creates a new
|
||||
file with _wandb postfix. Eg -> data_wandb.yaml
|
||||
|
||||
returns:
|
||||
the new .yaml file with artifact links. it can be used to start training directly from artifacts
|
||||
'''
|
||||
with open(data_file, encoding='ascii', errors='ignore') as f:
|
||||
data = yaml.safe_load(f) # data dict
|
||||
check_dataset(data)
|
||||
|
@ -257,12 +330,27 @@ class WandbLogger():
|
|||
return path
|
||||
|
||||
def map_val_table_path(self):
|
||||
'''
|
||||
Map the validation dataset Table like name of file -> it's id in the W&B Table.
|
||||
Useful for - referencing artifacts for evaluation.
|
||||
'''
|
||||
self.val_table_path_map = {}
|
||||
print("Mapping dataset")
|
||||
for i, data in enumerate(tqdm(self.val_table.data)):
|
||||
self.val_table_path_map[data[3]] = data[0]
|
||||
|
||||
def create_dataset_table(self, dataset, class_to_id, name='dataset'):
|
||||
'''
|
||||
Create and return W&B artifact containing W&B Table of the dataset.
|
||||
|
||||
arguments:
|
||||
dataset (LoadImagesAndLabels) -- instance of LoadImagesAndLabels class used to iterate over the data to build Table
|
||||
class_to_id (dict(int, str)) -- hash map that maps class ids to labels
|
||||
name (str) -- name of the artifact
|
||||
|
||||
returns:
|
||||
dataset artifact to be logged or used
|
||||
'''
|
||||
# TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
|
||||
artifact = wandb.Artifact(name=name, type="dataset")
|
||||
img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
|
||||
|
@ -294,6 +382,14 @@ class WandbLogger():
|
|||
return artifact
|
||||
|
||||
def log_training_progress(self, predn, path, names):
|
||||
'''
|
||||
Build evaluation Table. Uses reference from validation dataset table.
|
||||
|
||||
arguments:
|
||||
predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
||||
path (str): local path of the current evaluation image
|
||||
names (dict(int, str)): hash map that maps class ids to labels
|
||||
'''
|
||||
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
|
||||
box_data = []
|
||||
total_conf = 0
|
||||
|
@ -316,25 +412,45 @@ class WandbLogger():
|
|||
)
|
||||
|
||||
def val_one_image(self, pred, predn, path, names, im):
|
||||
'''
|
||||
Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel
|
||||
|
||||
arguments:
|
||||
pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
||||
predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class]
|
||||
path (str): local path of the current evaluation image
|
||||
'''
|
||||
if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact
|
||||
self.log_training_progress(predn, path, names)
|
||||
else: # Default to bbox media panelif Val artifact not found
|
||||
if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0:
|
||||
if self.current_epoch % self.bbox_interval == 0:
|
||||
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
|
||||
"class_id": int(cls),
|
||||
"box_caption": "%s %.3f" % (names[cls], conf),
|
||||
"scores": {"class_score": conf},
|
||||
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
|
||||
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
|
||||
self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name))
|
||||
|
||||
if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0:
|
||||
if self.current_epoch % self.bbox_interval == 0:
|
||||
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
|
||||
"class_id": int(cls),
|
||||
"box_caption": "%s %.3f" % (names[cls], conf),
|
||||
"scores": {"class_score": conf},
|
||||
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
|
||||
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
|
||||
self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name))
|
||||
|
||||
def log(self, log_dict):
|
||||
'''
|
||||
save the metrics to the logging dictionary
|
||||
|
||||
arguments:
|
||||
log_dict (Dict) -- metrics/media to be logged in current step
|
||||
'''
|
||||
if self.wandb_run:
|
||||
for key, value in log_dict.items():
|
||||
self.log_dict[key] = value
|
||||
|
||||
def end_epoch(self, best_result=False):
|
||||
'''
|
||||
commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
|
||||
|
||||
arguments:
|
||||
best_result (boolean): Boolean representing if the result of this evaluation is best or not
|
||||
'''
|
||||
if self.wandb_run:
|
||||
with all_logging_disabled():
|
||||
if self.bbox_media_panel_images:
|
||||
|
@ -352,6 +468,9 @@ class WandbLogger():
|
|||
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
|
||||
|
||||
def finish_run(self):
|
||||
'''
|
||||
Log metrics if any and finish the current W&B run
|
||||
'''
|
||||
if self.wandb_run:
|
||||
if self.log_dict:
|
||||
with all_logging_disabled():
|
||||
|
|
Loading…
Reference in New Issue