DetectMultiBackend improvements (#9269)
* Update common.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update common.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update common.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update common.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>pull/9274/head
parent
5cb9fe612a
commit
63ecce60ea
|
@ -354,6 +354,7 @@ class DetectMultiBackend(nn.Module):
|
|||
import onnxruntime
|
||||
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
|
||||
session = onnxruntime.InferenceSession(w, providers=providers)
|
||||
output_names = [x.name for x in session.get_outputs()]
|
||||
meta = session.get_modelmeta().custom_metadata_map # metadata
|
||||
if 'stride' in meta:
|
||||
stride, names = int(meta['stride']), eval(meta['names'])
|
||||
|
@ -372,9 +373,7 @@ class DetectMultiBackend(nn.Module):
|
|||
batch_size = batch_dim.get_length()
|
||||
executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2
|
||||
output_layer = next(iter(executable_network.outputs))
|
||||
meta = Path(w).with_suffix('.yaml')
|
||||
if meta.exists():
|
||||
stride, names = self._load_metadata(meta) # load metadata
|
||||
stride, names = self._load_metadata(Path(w).with_suffix('.yaml')) # load metadata
|
||||
elif engine: # TensorRT
|
||||
LOGGER.info(f'Loading {w} for TensorRT inference...')
|
||||
import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
|
||||
|
@ -476,7 +475,7 @@ class DetectMultiBackend(nn.Module):
|
|||
y = self.net.forward()
|
||||
elif self.onnx: # ONNX Runtime
|
||||
im = im.cpu().numpy() # torch to numpy
|
||||
y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0]
|
||||
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})[0]
|
||||
elif self.xml: # OpenVINO
|
||||
im = im.cpu().numpy() # FP32
|
||||
y = self.executable_network([im])[self.output_layer]
|
||||
|
@ -524,7 +523,7 @@ class DetectMultiBackend(nn.Module):
|
|||
y[..., :4] *= [w, h, w, h] # xywh normalized to pixels
|
||||
|
||||
if isinstance(y, np.ndarray):
|
||||
y = torch.tensor(y, device=self.device)
|
||||
y = torch.from_numpy(y).to(self.device)
|
||||
return (y, []) if val else y
|
||||
|
||||
def warmup(self, imgsz=(1, 3, 640, 640)):
|
||||
|
@ -548,10 +547,12 @@ class DetectMultiBackend(nn.Module):
|
|||
return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs
|
||||
|
||||
@staticmethod
|
||||
def _load_metadata(f='path/to/meta.yaml'):
|
||||
def _load_metadata(f=Path('path/to/meta.yaml')):
|
||||
# Load metadata from meta.yaml if it exists
|
||||
d = yaml_load(f)
|
||||
return d['stride'], d['names'] # assign stride, names
|
||||
if f.exists():
|
||||
d = yaml_load(f)
|
||||
return d['stride'], d['names'] # assign stride, names
|
||||
return None, None
|
||||
|
||||
|
||||
class AutoShape(nn.Module):
|
||||
|
|
Loading…
Reference in New Issue