update get_voc.sh
parent
fd0b1cc924
commit
659ad748c8
|
@ -1,5 +1,5 @@
|
|||
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
|
||||
FROM nvcr.io/nvidia/pytorch:20.06-py3
|
||||
FROM nvcr.io/nvidia/pytorch:20.03-py3
|
||||
RUN pip install -U gsutil
|
||||
|
||||
# Create working directory
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
|
||||
# Download command: bash yolov5/data/get_voc.sh
|
||||
# Download command: bash ./data/get_voc.sh
|
||||
# Train command: python train.py --data voc.yaml
|
||||
# Dataset should be placed next to yolov5 folder:
|
||||
# /parent_folder
|
||||
|
|
|
@ -102,7 +102,7 @@ def detect(save_img=False):
|
|||
|
||||
if save_img or view_img: # Add bbox to image
|
||||
label = '%s %.2f' % (names[int(cls)], conf)
|
||||
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
|
||||
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)
|
||||
|
||||
# Print time (inference + NMS)
|
||||
print('%sDone. (%.3fs)' % (s, t2 - t1))
|
||||
|
@ -139,10 +139,10 @@ def detect(save_img=False):
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='model.pt path')
|
||||
parser.add_argument('--weights', type=str, default='weights/yolov5m.pt', help='model.pt path')
|
||||
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
|
||||
parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder
|
||||
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
||||
parser.add_argument('--img-size', type=int, default=1024, help='inference size (pixels)')
|
||||
parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
|
||||
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
|
||||
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
|
||||
|
|
|
@ -56,5 +56,17 @@ if __name__ == '__main__':
|
|||
except Exception as e:
|
||||
print('ONNX export failure: %s' % e)
|
||||
|
||||
# CoreML export
|
||||
try:
|
||||
import coremltools as ct
|
||||
|
||||
print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
|
||||
model = ct.convert(ts, inputs=[ct.ImageType(name='images', shape=img.shape)]) # convert
|
||||
f = opt.weights.replace('.pt', '.mlmodel') # filename
|
||||
model.save(f)
|
||||
print('CoreML export success, saved as %s' % f)
|
||||
except Exception as e:
|
||||
print('CoreML export failure: %s' % e)
|
||||
|
||||
# Finish
|
||||
print('\nExport complete. Visualize with https://github.com/lutzroeder/netron.')
|
||||
|
|
Loading…
Reference in New Issue