Increase plot_labels() speed (#1736)
parent
49abc722fc
commit
685d601308
2
train.py
2
train.py
|
@ -205,7 +205,7 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
|||
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
|
||||
# model._initialize_biases(cf.to(device))
|
||||
if plots:
|
||||
Thread(target=plot_labels, args=(labels, save_dir, loggers), daemon=True).start()
|
||||
plot_labels(labels, save_dir, loggers)
|
||||
if tb_writer:
|
||||
tb_writer.add_histogram('classes', c, 0)
|
||||
|
||||
|
|
|
@ -11,6 +11,8 @@ import cv2
|
|||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
import torch
|
||||
import yaml
|
||||
from PIL import Image, ImageDraw
|
||||
|
@ -253,34 +255,24 @@ def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_tx
|
|||
|
||||
def plot_labels(labels, save_dir=Path(''), loggers=None):
|
||||
# plot dataset labels
|
||||
print('Plotting labels... ')
|
||||
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
|
||||
nc = int(c.max() + 1) # number of classes
|
||||
colors = color_list()
|
||||
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
|
||||
|
||||
# seaborn correlogram
|
||||
try:
|
||||
import seaborn as sns
|
||||
import pandas as pd
|
||||
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
|
||||
sns.pairplot(x, corner=True, diag_kind='hist', kind='scatter', markers='o',
|
||||
plot_kws=dict(s=3, edgecolor=None, linewidth=1, alpha=0.02),
|
||||
diag_kws=dict(bins=50))
|
||||
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
|
||||
plt.close()
|
||||
except Exception as e:
|
||||
pass
|
||||
sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
|
||||
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
|
||||
plt.close()
|
||||
|
||||
# matplotlib labels
|
||||
matplotlib.use('svg') # faster
|
||||
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
|
||||
ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
|
||||
ax[0].set_xlabel('classes')
|
||||
ax[2].scatter(b[0], b[1], c=hist2d(b[0], b[1], 90), cmap='jet')
|
||||
ax[2].set_xlabel('x')
|
||||
ax[2].set_ylabel('y')
|
||||
ax[3].scatter(b[2], b[3], c=hist2d(b[2], b[3], 90), cmap='jet')
|
||||
ax[3].set_xlabel('width')
|
||||
ax[3].set_ylabel('height')
|
||||
sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
|
||||
sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
|
||||
|
||||
# rectangles
|
||||
labels[:, 1:3] = 0.5 # center
|
||||
|
|
Loading…
Reference in New Issue