mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
W&B: Refactor the wandb_utils.py file (#4496)
* Improve docstrings and run names * default wandb login prompt with timeout * return key * Update api_key check logic * Properly support zipped dataset feature * update docstring * Revert tuorial change * extend changes to log_dataset * add run name * bug fix * bug fix * Update comment * fix import check * remove unused import * Hardcore .yaml file extension * reduce code * Reformat using pycharm * Remove redundant try catch * More refactoring and bug fixes * retry * Reformat using pycharm * respect LOGGERS include list * Fix * fix * refactor constructor * refactor * refactor * refactor * PyCharm reformat Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
d1182c4f29
commit
7316b78e36
@ -38,6 +38,19 @@ def check_wandb_config_file(data_config_file):
|
||||
return data_config_file
|
||||
|
||||
|
||||
def check_wandb_dataset(data_file):
|
||||
is_wandb_artifact = False
|
||||
if check_file(data_file) and data_file.endswith('.yaml'):
|
||||
with open(data_file, errors='ignore') as f:
|
||||
data_dict = yaml.safe_load(f)
|
||||
is_wandb_artifact = (data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX) or
|
||||
data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX))
|
||||
if is_wandb_artifact:
|
||||
return data_dict
|
||||
else:
|
||||
return check_dataset(data_file)
|
||||
|
||||
|
||||
def get_run_info(run_path):
|
||||
run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
|
||||
run_id = run_path.stem
|
||||
@ -147,26 +160,24 @@ class WandbLogger():
|
||||
allow_val_change=True) if not wandb.run else wandb.run
|
||||
if self.wandb_run:
|
||||
if self.job_type == 'Training':
|
||||
if not opt.resume:
|
||||
if opt.upload_dataset:
|
||||
if not opt.resume:
|
||||
self.wandb_artifact_data_dict = self.check_and_upload_dataset(opt)
|
||||
|
||||
elif opt.data.endswith('_wandb.yaml'): # When dataset is W&B artifact
|
||||
with open(opt.data, errors='ignore') as f:
|
||||
data_dict = yaml.safe_load(f)
|
||||
self.data_dict = data_dict
|
||||
else: # Local .yaml dataset file or .zip file
|
||||
self.data_dict = check_dataset(opt.data)
|
||||
if opt.resume:
|
||||
# resume from artifact
|
||||
if isinstance(opt.resume, str) and opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
||||
self.data_dict = dict(self.wandb_run.config.data_dict)
|
||||
else: # local resume
|
||||
self.data_dict = check_wandb_dataset(opt.data)
|
||||
else:
|
||||
self.data_dict = check_dataset(opt.data)
|
||||
self.data_dict = check_wandb_dataset(opt.data)
|
||||
self.wandb_artifact_data_dict = self.wandb_artifact_data_dict or self.data_dict
|
||||
|
||||
self.setup_training(opt)
|
||||
if not self.wandb_artifact_data_dict:
|
||||
self.wandb_artifact_data_dict = self.data_dict
|
||||
# write data_dict to config. useful for resuming from artifacts. Do this only when not resuming.
|
||||
if not opt.resume:
|
||||
self.wandb_run.config.update({'data_dict': self.wandb_artifact_data_dict},
|
||||
allow_val_change=True)
|
||||
self.setup_training(opt)
|
||||
|
||||
if self.job_type == 'Dataset Creation':
|
||||
self.data_dict = self.check_and_upload_dataset(opt)
|
||||
@ -211,8 +222,6 @@ class WandbLogger():
|
||||
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str(
|
||||
self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs, \
|
||||
config.hyp
|
||||
data_dict = dict(self.wandb_run.config.data_dict) # eliminates the need for config file to resume
|
||||
else:
|
||||
data_dict = self.data_dict
|
||||
if self.val_artifact is None: # If --upload_dataset is set, use the existing artifact, don't download
|
||||
self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'),
|
||||
|
Loading…
x
Reference in New Issue
Block a user