Start setup for improved W&B integration (#1948)
* Add helper functions for wandb and artifacts * cleanup * Reorganize files * Update wandb_utils.py * Update log_dataset.py We can remove this code, as the giou hyp has been deprecated for a while now. * Reorganize and update dataloader call * yaml.SafeLoader * PEP8 reformat * remove redundant checks * Add helper functions for wandb and artifacts * cleanup * Reorganize files * Update wandb_utils.py * Update log_dataset.py We can remove this code, as the giou hyp has been deprecated for a while now. * Reorganize and update dataloader call * yaml.SafeLoader * PEP8 reformat * remove redundant checks * Update util files * Update wandb_utils.py * Remove word size * Change path of labels.zip * remove unused imports * remove --rect * log_dataset.py cleanup * log_dataset.py cleanup2 * wandb_utils.py cleanup * remove redundant id_count * wandb_utils.py cleanup2 * rename cls * use pathlib for zip * rename dataloader to dataset * Change import order * Remove redundant code * remove unused import * remove unused imports Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>pull/2140/head
parent
9646ca438a
commit
73a0669930
|
@ -348,6 +348,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
|
||||
self.mosaic_border = [-img_size // 2, -img_size // 2]
|
||||
self.stride = stride
|
||||
self.path = path
|
||||
|
||||
try:
|
||||
f = [] # image files
|
||||
|
|
|
@ -0,0 +1,39 @@
|
|||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
import yaml
|
||||
|
||||
from wandb_utils import WandbLogger
|
||||
from utils.datasets import LoadImagesAndLabels
|
||||
|
||||
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
|
||||
|
||||
|
||||
def create_dataset_artifact(opt):
|
||||
with open(opt.data) as f:
|
||||
data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
|
||||
logger = WandbLogger(opt, '', None, data, job_type='create_dataset')
|
||||
nc, names = (1, ['item']) if opt.single_cls else (int(data['nc']), data['names'])
|
||||
names = {k: v for k, v in enumerate(names)} # to index dictionary
|
||||
logger.log_dataset_artifact(LoadImagesAndLabels(data['train']), names, name='train') # trainset
|
||||
logger.log_dataset_artifact(LoadImagesAndLabels(data['val']), names, name='val') # valset
|
||||
|
||||
# Update data.yaml with artifact links
|
||||
data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(opt.project) / 'train')
|
||||
data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(opt.project) / 'val')
|
||||
path = opt.data if opt.overwrite_config else opt.data.replace('.', '_wandb.') # updated data.yaml path
|
||||
data.pop('download', None) # download via artifact instead of predefined field 'download:'
|
||||
with open(path, 'w') as f:
|
||||
yaml.dump(data, f)
|
||||
print("New Config file => ", path)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
|
||||
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
|
||||
parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
|
||||
parser.add_argument('--overwrite_config', action='store_true', help='overwrite data.yaml')
|
||||
opt = parser.parse_args()
|
||||
|
||||
create_dataset_artifact(opt)
|
|
@ -0,0 +1,145 @@
|
|||
import json
|
||||
import shutil
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
|
||||
sys.path.append(str(Path(__file__).parent.parent.parent)) # add utils/ to path
|
||||
from utils.general import colorstr, xywh2xyxy
|
||||
|
||||
try:
|
||||
import wandb
|
||||
except ImportError:
|
||||
wandb = None
|
||||
print(f"{colorstr('wandb: ')}Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)")
|
||||
|
||||
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
|
||||
|
||||
|
||||
def remove_prefix(from_string, prefix):
|
||||
return from_string[len(prefix):]
|
||||
|
||||
|
||||
class WandbLogger():
|
||||
def __init__(self, opt, name, run_id, data_dict, job_type='Training'):
|
||||
self.wandb = wandb
|
||||
self.wandb_run = wandb.init(config=opt, resume="allow",
|
||||
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
|
||||
name=name,
|
||||
job_type=job_type,
|
||||
id=run_id) if self.wandb else None
|
||||
|
||||
if job_type == 'Training':
|
||||
self.setup_training(opt, data_dict)
|
||||
if opt.bbox_interval == -1:
|
||||
opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else opt.epochs
|
||||
if opt.save_period == -1:
|
||||
opt.save_period = (opt.epochs // 10) if opt.epochs > 10 else opt.epochs
|
||||
|
||||
def setup_training(self, opt, data_dict):
|
||||
self.log_dict = {}
|
||||
self.train_artifact_path, self.trainset_artifact = \
|
||||
self.download_dataset_artifact(data_dict['train'], opt.artifact_alias)
|
||||
self.test_artifact_path, self.testset_artifact = \
|
||||
self.download_dataset_artifact(data_dict['val'], opt.artifact_alias)
|
||||
self.result_artifact, self.result_table, self.weights = None, None, None
|
||||
if self.train_artifact_path is not None:
|
||||
train_path = Path(self.train_artifact_path) / 'data/images/'
|
||||
data_dict['train'] = str(train_path)
|
||||
if self.test_artifact_path is not None:
|
||||
test_path = Path(self.test_artifact_path) / 'data/images/'
|
||||
data_dict['val'] = str(test_path)
|
||||
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
|
||||
self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
|
||||
if opt.resume_from_artifact:
|
||||
modeldir, _ = self.download_model_artifact(opt.resume_from_artifact)
|
||||
if modeldir:
|
||||
self.weights = Path(modeldir) / "best.pt"
|
||||
opt.weights = self.weights
|
||||
|
||||
def download_dataset_artifact(self, path, alias):
|
||||
if path.startswith(WANDB_ARTIFACT_PREFIX):
|
||||
dataset_artifact = wandb.use_artifact(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
|
||||
assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
|
||||
datadir = dataset_artifact.download()
|
||||
labels_zip = Path(datadir) / "data/labels.zip"
|
||||
shutil.unpack_archive(labels_zip, Path(datadir) / 'data/labels', 'zip')
|
||||
print("Downloaded dataset to : ", datadir)
|
||||
return datadir, dataset_artifact
|
||||
return None, None
|
||||
|
||||
def download_model_artifact(self, name):
|
||||
model_artifact = wandb.use_artifact(name + ":latest")
|
||||
assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
|
||||
modeldir = model_artifact.download()
|
||||
print("Downloaded model to : ", modeldir)
|
||||
return modeldir, model_artifact
|
||||
|
||||
def log_model(self, path, opt, epoch):
|
||||
datetime_suffix = datetime.today().strftime('%Y-%m-%d-%H-%M-%S')
|
||||
model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
|
||||
'original_url': str(path),
|
||||
'epoch': epoch + 1,
|
||||
'save period': opt.save_period,
|
||||
'project': opt.project,
|
||||
'datetime': datetime_suffix
|
||||
})
|
||||
model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
|
||||
model_artifact.add_file(str(path / 'best.pt'), name='best.pt')
|
||||
wandb.log_artifact(model_artifact)
|
||||
print("Saving model artifact on epoch ", epoch + 1)
|
||||
|
||||
def log_dataset_artifact(self, dataset, class_to_id, name='dataset'):
|
||||
artifact = wandb.Artifact(name=name, type="dataset")
|
||||
image_path = dataset.path
|
||||
artifact.add_dir(image_path, name='data/images')
|
||||
table = wandb.Table(columns=["id", "train_image", "Classes"])
|
||||
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
|
||||
for si, (img, labels, paths, shapes) in enumerate(dataset):
|
||||
height, width = shapes[0]
|
||||
labels[:, 2:] = (xywh2xyxy(labels[:, 2:].view(-1, 4)))
|
||||
labels[:, 2:] *= torch.Tensor([width, height, width, height])
|
||||
box_data = []
|
||||
img_classes = {}
|
||||
for cls, *xyxy in labels[:, 1:].tolist():
|
||||
cls = int(cls)
|
||||
box_data.append({"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
|
||||
"class_id": cls,
|
||||
"box_caption": "%s" % (class_to_id[cls]),
|
||||
"scores": {"acc": 1},
|
||||
"domain": "pixel"})
|
||||
img_classes[cls] = class_to_id[cls]
|
||||
boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
|
||||
table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), json.dumps(img_classes))
|
||||
artifact.add(table, name)
|
||||
labels_path = 'labels'.join(image_path.rsplit('images', 1))
|
||||
zip_path = Path(labels_path).parent / (name + '_labels.zip')
|
||||
if not zip_path.is_file(): # make_archive won't check if file exists
|
||||
shutil.make_archive(zip_path.with_suffix(''), 'zip', labels_path)
|
||||
artifact.add_file(str(zip_path), name='data/labels.zip')
|
||||
wandb.log_artifact(artifact)
|
||||
print("Saving data to W&B...")
|
||||
|
||||
def log(self, log_dict):
|
||||
if self.wandb_run:
|
||||
for key, value in log_dict.items():
|
||||
self.log_dict[key] = value
|
||||
|
||||
def end_epoch(self):
|
||||
if self.wandb_run and self.log_dict:
|
||||
wandb.log(self.log_dict)
|
||||
self.log_dict = {}
|
||||
|
||||
def finish_run(self):
|
||||
if self.wandb_run:
|
||||
if self.result_artifact:
|
||||
print("Add Training Progress Artifact")
|
||||
self.result_artifact.add(self.result_table, 'result')
|
||||
train_results = wandb.JoinedTable(self.testset_artifact.get("val"), self.result_table, "id")
|
||||
self.result_artifact.add(train_results, 'joined_result')
|
||||
wandb.log_artifact(self.result_artifact)
|
||||
if self.log_dict:
|
||||
wandb.log(self.log_dict)
|
||||
wandb.run.finish()
|
Loading…
Reference in New Issue