valid argument fix for gradscaler
commit
77180d7087
|
@ -108,7 +108,7 @@ def run(
|
|||
action = "validating" if dataloader.dataset.root.stem == "val" else "testing"
|
||||
desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
|
||||
bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
|
||||
with torch.amp.autocast('cuda', enabled=device.type != "cpu"):
|
||||
with torch.amp.autocast("cuda", enabled=device.type != "cpu"):
|
||||
for images, labels in bar:
|
||||
with dt[0]:
|
||||
images, labels = images.to(device, non_blocking=True), labels.to(device)
|
||||
|
|
|
@ -861,7 +861,7 @@ class AutoShape(nn.Module):
|
|||
p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
|
||||
autocast = self.amp and (p.device.type != "cpu") # Automatic Mixed Precision (AMP) inference
|
||||
if isinstance(ims, torch.Tensor): # torch
|
||||
with torch.amp.autocast('cuda', enabled=autocast):
|
||||
with torch.amp.autocast("cuda", enabled=autocast):
|
||||
return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
|
||||
|
||||
# Pre-process
|
||||
|
@ -888,7 +888,7 @@ class AutoShape(nn.Module):
|
|||
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
|
||||
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
|
||||
|
||||
with torch.amp.autocast('cuda', enabled=autocast):
|
||||
with torch.amp.autocast("cuda", enabled=autocast):
|
||||
# Inference
|
||||
with dt[1]:
|
||||
y = self.model(x, augment=augment) # forward
|
||||
|
|
|
@ -320,7 +320,7 @@ def train(hyp, opt, device, callbacks):
|
|||
maps = np.zeros(nc) # mAP per class
|
||||
results = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||||
scheduler.last_epoch = start_epoch - 1 # do not move
|
||||
scaler = torch.amp.GradScaler('cuda', enabled=amp)
|
||||
scaler = torch.amp.GradScaler(enabled=amp)
|
||||
stopper, stop = EarlyStopping(patience=opt.patience), False
|
||||
compute_loss = ComputeLoss(model, overlap=overlap) # init loss class
|
||||
# callbacks.run('on_train_start')
|
||||
|
@ -380,7 +380,7 @@ def train(hyp, opt, device, callbacks):
|
|||
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
|
||||
|
||||
# Forward
|
||||
with torch.amp.autocast('cuda', enabled=amp):
|
||||
with torch.amp.autocast("cuda", enabled=amp):
|
||||
pred = model(imgs) # forward
|
||||
loss, loss_items = compute_loss(pred, targets.to(device), masks=masks.to(device).float())
|
||||
if RANK != -1:
|
||||
|
|
2
train.py
2
train.py
|
@ -409,7 +409,7 @@ def train(hyp, opt, device, callbacks):
|
|||
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
|
||||
|
||||
# Forward
|
||||
with torch.amp.autocast('cuda', enabled=amp):
|
||||
with torch.amp.autocast("cuda", enabled=amp):
|
||||
pred = model(imgs) # forward
|
||||
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
|
||||
if RANK != -1:
|
||||
|
|
|
@ -12,7 +12,7 @@ from utils.torch_utils import profile
|
|||
|
||||
def check_train_batch_size(model, imgsz=640, amp=True):
|
||||
"""Checks and computes optimal training batch size for YOLOv5 model, given image size and AMP setting."""
|
||||
with torch.amp.autocast('cuda', enabled=amp):
|
||||
with torch.amp.autocast("cuda", enabled=amp):
|
||||
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue