[pre-commit.ci] pre-commit suggestions (#7279)
* [pre-commit.ci] pre-commit suggestions updates: - [github.com/asottile/pyupgrade: v2.31.0 → v2.31.1](https://github.com/asottile/pyupgrade/compare/v2.31.0...v2.31.1) - [github.com/pre-commit/mirrors-yapf: v0.31.0 → v0.32.0](https://github.com/pre-commit/mirrors-yapf/compare/v0.31.0...v0.32.0) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update yolo.py * Update activations.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update activations.py * Update tf.py * Update tf.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>pull/7282/head
parent
ea72b84f5e
commit
7882950577
|
@ -24,7 +24,7 @@ repos:
|
|||
- id: check-docstring-first
|
||||
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v2.31.0
|
||||
rev: v2.31.1
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
args: [--py36-plus]
|
||||
|
@ -37,7 +37,7 @@ repos:
|
|||
name: Sort imports
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-yapf
|
||||
rev: v0.31.0
|
||||
rev: v0.32.0
|
||||
hooks:
|
||||
- id: yapf
|
||||
name: YAPF formatting
|
||||
|
|
|
@ -50,6 +50,7 @@ class TFBN(keras.layers.Layer):
|
|||
|
||||
|
||||
class TFPad(keras.layers.Layer):
|
||||
|
||||
def __init__(self, pad):
|
||||
super().__init__()
|
||||
self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
|
||||
|
@ -206,6 +207,7 @@ class TFSPPF(keras.layers.Layer):
|
|||
|
||||
|
||||
class TFDetect(keras.layers.Layer):
|
||||
# TF YOLOv5 Detect layer
|
||||
def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer
|
||||
super().__init__()
|
||||
self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
|
||||
|
@ -255,6 +257,7 @@ class TFDetect(keras.layers.Layer):
|
|||
|
||||
|
||||
class TFUpsample(keras.layers.Layer):
|
||||
# TF version of torch.nn.Upsample()
|
||||
def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w'
|
||||
super().__init__()
|
||||
assert scale_factor == 2, "scale_factor must be 2"
|
||||
|
@ -269,6 +272,7 @@ class TFUpsample(keras.layers.Layer):
|
|||
|
||||
|
||||
class TFConcat(keras.layers.Layer):
|
||||
# TF version of torch.concat()
|
||||
def __init__(self, dimension=1, w=None):
|
||||
super().__init__()
|
||||
assert dimension == 1, "convert only NCHW to NHWC concat"
|
||||
|
@ -331,6 +335,7 @@ def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
|
|||
|
||||
|
||||
class TFModel:
|
||||
# TF YOLOv5 model
|
||||
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes
|
||||
super().__init__()
|
||||
if isinstance(cfg, dict):
|
||||
|
|
|
@ -88,6 +88,7 @@ class Detect(nn.Module):
|
|||
|
||||
|
||||
class Model(nn.Module):
|
||||
# YOLOv5 model
|
||||
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
|
||||
super().__init__()
|
||||
if isinstance(cfg, dict):
|
||||
|
|
|
@ -8,29 +8,32 @@ import torch.nn as nn
|
|||
import torch.nn.functional as F
|
||||
|
||||
|
||||
# SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
|
||||
class SiLU(nn.Module): # export-friendly version of nn.SiLU()
|
||||
class SiLU(nn.Module):
|
||||
# SiLU activation https://arxiv.org/pdf/1606.08415.pdf
|
||||
@staticmethod
|
||||
def forward(x):
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
|
||||
class Hardswish(nn.Module):
|
||||
# Hard-SiLU activation
|
||||
@staticmethod
|
||||
def forward(x):
|
||||
# return x * F.hardsigmoid(x) # for TorchScript and CoreML
|
||||
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX
|
||||
|
||||
|
||||
# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
|
||||
class Mish(nn.Module):
|
||||
# Mish activation https://github.com/digantamisra98/Mish
|
||||
@staticmethod
|
||||
def forward(x):
|
||||
return x * F.softplus(x).tanh()
|
||||
|
||||
|
||||
class MemoryEfficientMish(nn.Module):
|
||||
# Mish activation memory-efficient
|
||||
class F(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, x):
|
||||
ctx.save_for_backward(x)
|
||||
|
@ -47,8 +50,8 @@ class MemoryEfficientMish(nn.Module):
|
|||
return self.F.apply(x)
|
||||
|
||||
|
||||
# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
|
||||
class FReLU(nn.Module):
|
||||
# FReLU activation https://arxiv.org/abs/2007.11824
|
||||
def __init__(self, c1, k=3): # ch_in, kernel
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
|
||||
|
@ -58,12 +61,12 @@ class FReLU(nn.Module):
|
|||
return torch.max(x, self.bn(self.conv(x)))
|
||||
|
||||
|
||||
# ACON https://arxiv.org/pdf/2009.04759.pdf ----------------------------------------------------------------------------
|
||||
class AconC(nn.Module):
|
||||
r""" ACON activation (activate or not).
|
||||
r""" ACON activation (activate or not)
|
||||
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
|
||||
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
||||
"""
|
||||
|
||||
def __init__(self, c1):
|
||||
super().__init__()
|
||||
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
||||
|
@ -76,10 +79,11 @@ class AconC(nn.Module):
|
|||
|
||||
|
||||
class MetaAconC(nn.Module):
|
||||
r""" ACON activation (activate or not).
|
||||
r""" ACON activation (activate or not)
|
||||
MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
|
||||
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
||||
"""
|
||||
|
||||
def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r
|
||||
super().__init__()
|
||||
c2 = max(r, c1 // r)
|
||||
|
|
|
@ -8,6 +8,7 @@ class Callbacks:
|
|||
""""
|
||||
Handles all registered callbacks for YOLOv5 Hooks
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
# Define the available callbacks
|
||||
self._callbacks = {
|
||||
|
|
|
@ -145,6 +145,7 @@ class InfiniteDataLoader(dataloader.DataLoader):
|
|||
|
||||
Uses same syntax as vanilla DataLoader
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
|
||||
|
@ -164,6 +165,7 @@ class _RepeatSampler:
|
|||
Args:
|
||||
sampler (Sampler)
|
||||
"""
|
||||
|
||||
def __init__(self, sampler):
|
||||
self.sampler = sampler
|
||||
|
||||
|
@ -978,6 +980,7 @@ def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profil
|
|||
autodownload: Attempt to download dataset if not found locally
|
||||
verbose: Print stats dictionary
|
||||
"""
|
||||
|
||||
def round_labels(labels):
|
||||
# Update labels to integer class and 6 decimal place floats
|
||||
return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels]
|
||||
|
|
|
@ -116,6 +116,7 @@ class WandbLogger():
|
|||
For more on how this logger is used, see the Weights & Biases documentation:
|
||||
https://docs.wandb.com/guides/integrations/yolov5
|
||||
"""
|
||||
|
||||
def __init__(self, opt, run_id=None, job_type='Training'):
|
||||
"""
|
||||
- Initialize WandbLogger instance
|
||||
|
|
|
@ -260,6 +260,7 @@ def box_iou(box1, box2):
|
|||
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
||||
IoU values for every element in boxes1 and boxes2
|
||||
"""
|
||||
|
||||
def box_area(box):
|
||||
# box = 4xn
|
||||
return (box[2] - box[0]) * (box[3] - box[1])
|
||||
|
|
|
@ -284,6 +284,7 @@ class ModelEMA:
|
|||
Keeps a moving average of everything in the model state_dict (parameters and buffers)
|
||||
For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
|
||||
"""
|
||||
|
||||
def __init__(self, model, decay=0.9999, tau=2000, updates=0):
|
||||
# Create EMA
|
||||
self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA
|
||||
|
|
Loading…
Reference in New Issue