Pycocotools best.pt after COCO train (#1616)
* Pycocotools best.pt after COCO train * cleanuppull/1619/head
parent
d929bb656c
commit
791dadb51c
|
@ -0,0 +1,41 @@
|
|||
# parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
|
||||
# anchors
|
||||
anchors:
|
||||
- [10,14, 23,27, 37,58] # P4/16
|
||||
- [81,82, 135,169, 344,319] # P5/32
|
||||
|
||||
# YOLOv3-tiny backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[[-1, 1, Conv, [16, 3, 1]], # 0
|
||||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
|
||||
[-1, 1, Conv, [32, 3, 1]],
|
||||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
|
||||
[-1, 1, Conv, [64, 3, 1]],
|
||||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
|
||||
[-1, 1, Conv, [128, 3, 1]],
|
||||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
|
||||
[-1, 1, Conv, [256, 3, 1]],
|
||||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
|
||||
[-1, 1, Conv, [512, 3, 1]],
|
||||
[-1, 1, nn.ZeroPad2d, [0, 1, 0, 1]], # 11
|
||||
[-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
|
||||
]
|
||||
|
||||
# YOLOv3-tiny head
|
||||
head:
|
||||
[[-1, 1, Conv, [1024, 3, 1]],
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
|
||||
|
||||
[-2, 1, Conv, [128, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
|
||||
|
||||
[[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
|
||||
]
|
|
@ -0,0 +1,51 @@
|
|||
# parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
|
||||
# anchors
|
||||
anchors:
|
||||
- [10,13, 16,30, 33,23] # P3/8
|
||||
- [30,61, 62,45, 59,119] # P4/16
|
||||
- [116,90, 156,198, 373,326] # P5/32
|
||||
|
||||
# darknet53 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[[-1, 1, Conv, [32, 3, 1]], # 0
|
||||
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
||||
[-1, 1, Bottleneck, [64]],
|
||||
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
||||
[-1, 2, Bottleneck, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
||||
[-1, 8, Bottleneck, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
||||
[-1, 8, Bottleneck, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
||||
[-1, 4, Bottleneck, [1024]], # 10
|
||||
]
|
||||
|
||||
# YOLOv3 head
|
||||
head:
|
||||
[[-1, 1, Bottleneck, [1024, False]],
|
||||
[-1, 1, Conv, [512, [1, 1]]],
|
||||
[-1, 1, Conv, [1024, 3, 1]],
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
||||
|
||||
[-2, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 1, Bottleneck, [512, False]],
|
||||
[-1, 1, Bottleneck, [512, False]],
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
||||
|
||||
[-2, 1, Conv, [128, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 1, Bottleneck, [256, False]],
|
||||
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
||||
|
||||
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||
]
|
5
test.py
5
test.py
|
@ -1,5 +1,4 @@
|
|||
import argparse
|
||||
import glob
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
@ -246,7 +245,7 @@ def test(data,
|
|||
# Save JSON
|
||||
if save_json and len(jdict):
|
||||
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
|
||||
anno_json = glob.glob('../coco/annotations/instances_val*.json')[0] # annotations json
|
||||
anno_json = '../coco/annotations/instances_val2017.json' # annotations json
|
||||
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
|
||||
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
|
||||
with open(pred_json, 'w') as f:
|
||||
|
@ -266,7 +265,7 @@ def test(data,
|
|||
eval.summarize()
|
||||
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
|
||||
except Exception as e:
|
||||
print('ERROR: pycocotools unable to run: %s' % e)
|
||||
print(f'pycocotools unable to run: {e}')
|
||||
|
||||
# Return results
|
||||
if not training:
|
||||
|
|
33
train.py
33
train.py
|
@ -22,6 +22,7 @@ from torch.utils.tensorboard import SummaryWriter
|
|||
from tqdm import tqdm
|
||||
|
||||
import test # import test.py to get mAP after each epoch
|
||||
from models.experimental import attempt_load
|
||||
from models.yolo import Model
|
||||
from utils.autoanchor import check_anchors
|
||||
from utils.datasets import create_dataloader
|
||||
|
@ -193,9 +194,9 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
|||
# Process 0
|
||||
if rank in [-1, 0]:
|
||||
ema.updates = start_epoch * nb // accumulate # set EMA updates
|
||||
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt,
|
||||
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, # testloader
|
||||
hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True,
|
||||
rank=-1, world_size=opt.world_size, workers=opt.workers)[0] # testloader
|
||||
rank=-1, world_size=opt.world_size, workers=opt.workers, pad=0.5)[0]
|
||||
|
||||
if not opt.resume:
|
||||
labels = np.concatenate(dataset.labels, 0)
|
||||
|
@ -385,15 +386,12 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
|||
|
||||
if rank in [-1, 0]:
|
||||
# Strip optimizers
|
||||
n = opt.name if opt.name.isnumeric() else ''
|
||||
fresults, flast, fbest = save_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
|
||||
for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file], [flast, fbest, fresults]):
|
||||
if f1.exists():
|
||||
os.rename(f1, f2) # rename
|
||||
if str(f2).endswith('.pt'): # is *.pt
|
||||
strip_optimizer(f2) # strip optimizer
|
||||
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None # upload
|
||||
# Finish
|
||||
for f in [last, best]:
|
||||
if f.exists(): # is *.pt
|
||||
strip_optimizer(f) # strip optimizer
|
||||
os.system('gsutil cp %s gs://%s/weights' % (f, opt.bucket)) if opt.bucket else None # upload
|
||||
|
||||
# Plots
|
||||
if plots:
|
||||
plot_results(save_dir=save_dir) # save as results.png
|
||||
if wandb:
|
||||
|
@ -401,6 +399,19 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
|||
wandb.log({"Results": [wandb.Image(str(save_dir / f), caption=f) for f in files
|
||||
if (save_dir / f).exists()]})
|
||||
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
|
||||
|
||||
# Test best.pt
|
||||
if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
|
||||
results, _, _ = test.test(opt.data,
|
||||
batch_size=total_batch_size,
|
||||
imgsz=imgsz_test,
|
||||
model=attempt_load(best if best.exists() else last, device).half(),
|
||||
single_cls=opt.single_cls,
|
||||
dataloader=testloader,
|
||||
save_dir=save_dir,
|
||||
save_json=True, # use pycocotools
|
||||
plots=False)
|
||||
|
||||
else:
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ def gsutil_getsize(url=''):
|
|||
|
||||
def attempt_download(weights):
|
||||
# Attempt to download pretrained weights if not found locally
|
||||
weights = weights.strip().replace("'", '')
|
||||
weights = str(weights).strip().replace("'", '')
|
||||
file = Path(weights).name.lower()
|
||||
|
||||
msg = weights + ' missing, try downloading from https://github.com/ultralytics/yolov5/releases/'
|
||||
|
|
Loading…
Reference in New Issue