mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
Improved detect.py
timing (#4741)
* Improved detect.py timing * Eliminate 1 time_sync() call * Inference-only time * dash * #Save section * Cleanup
This commit is contained in:
parent
c5360f6e70
commit
7af1b4c266
24
detect.py
24
detect.py
@ -8,7 +8,6 @@ Usage:
|
|||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import sys
|
import sys
|
||||||
import time
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
@ -123,8 +122,9 @@ def run(weights='yolov5s.pt', # model.pt path(s)
|
|||||||
# Run inference
|
# Run inference
|
||||||
if pt and device.type != 'cpu':
|
if pt and device.type != 'cpu':
|
||||||
model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.parameters()))) # run once
|
model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.parameters()))) # run once
|
||||||
t0 = time.time()
|
dt, seen = [0.0, 0.0, 0.0], 0
|
||||||
for path, img, im0s, vid_cap in dataset:
|
for path, img, im0s, vid_cap in dataset:
|
||||||
|
t1 = time_sync()
|
||||||
if onnx:
|
if onnx:
|
||||||
img = img.astype('float32')
|
img = img.astype('float32')
|
||||||
else:
|
else:
|
||||||
@ -133,9 +133,10 @@ def run(weights='yolov5s.pt', # model.pt path(s)
|
|||||||
img = img / 255.0 # 0 - 255 to 0.0 - 1.0
|
img = img / 255.0 # 0 - 255 to 0.0 - 1.0
|
||||||
if len(img.shape) == 3:
|
if len(img.shape) == 3:
|
||||||
img = img[None] # expand for batch dim
|
img = img[None] # expand for batch dim
|
||||||
|
t2 = time_sync()
|
||||||
|
dt[0] += t2 - t1
|
||||||
|
|
||||||
# Inference
|
# Inference
|
||||||
t1 = time_sync()
|
|
||||||
if pt:
|
if pt:
|
||||||
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
||||||
pred = model(img, augment=augment, visualize=visualize)[0]
|
pred = model(img, augment=augment, visualize=visualize)[0]
|
||||||
@ -162,17 +163,20 @@ def run(weights='yolov5s.pt', # model.pt path(s)
|
|||||||
pred[..., 2] *= imgsz[1] # w
|
pred[..., 2] *= imgsz[1] # w
|
||||||
pred[..., 3] *= imgsz[0] # h
|
pred[..., 3] *= imgsz[0] # h
|
||||||
pred = torch.tensor(pred)
|
pred = torch.tensor(pred)
|
||||||
|
t3 = time_sync()
|
||||||
|
dt[1] += t3 - t2
|
||||||
|
|
||||||
# NMS
|
# NMS
|
||||||
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
||||||
t2 = time_sync()
|
dt[2] += time_sync() - t3
|
||||||
|
|
||||||
# Second-stage classifier (optional)
|
# Second-stage classifier (optional)
|
||||||
if classify:
|
if classify:
|
||||||
pred = apply_classifier(pred, modelc, img, im0s)
|
pred = apply_classifier(pred, modelc, img, im0s)
|
||||||
|
|
||||||
# Process predictions
|
# Process predictions
|
||||||
for i, det in enumerate(pred): # detections per image
|
for i, det in enumerate(pred): # per image
|
||||||
|
seen += 1
|
||||||
if webcam: # batch_size >= 1
|
if webcam: # batch_size >= 1
|
||||||
p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
|
p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
|
||||||
else:
|
else:
|
||||||
@ -209,8 +213,8 @@ def run(weights='yolov5s.pt', # model.pt path(s)
|
|||||||
if save_crop:
|
if save_crop:
|
||||||
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
||||||
|
|
||||||
# Print time (inference + NMS)
|
# Print time (inference-only)
|
||||||
print(f'{s}Done. ({t2 - t1:.3f}s)')
|
print(f'{s}Done. ({t3 - t2:.3f}s)')
|
||||||
|
|
||||||
# Stream results
|
# Stream results
|
||||||
im0 = annotator.result()
|
im0 = annotator.result()
|
||||||
@ -237,15 +241,15 @@ def run(weights='yolov5s.pt', # model.pt path(s)
|
|||||||
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
||||||
vid_writer[i].write(im0)
|
vid_writer[i].write(im0)
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
|
||||||
|
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
|
||||||
if save_txt or save_img:
|
if save_txt or save_img:
|
||||||
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
||||||
print(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
print(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
||||||
|
|
||||||
if update:
|
if update:
|
||||||
strip_optimizer(weights) # update model (to fix SourceChangeWarning)
|
strip_optimizer(weights) # update model (to fix SourceChangeWarning)
|
||||||
|
|
||||||
print(f'Done. ({time.time() - t0:.3f}s)')
|
|
||||||
|
|
||||||
|
|
||||||
def parse_opt():
|
def parse_opt():
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
|
16
val.py
16
val.py
@ -154,22 +154,22 @@ def run(data,
|
|||||||
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
|
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
|
||||||
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
|
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
|
||||||
s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
|
s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
|
||||||
p, r, f1, mp, mr, map50, map, t0, t1, t2 = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
|
dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
|
||||||
loss = torch.zeros(3, device=device)
|
loss = torch.zeros(3, device=device)
|
||||||
jdict, stats, ap, ap_class = [], [], [], []
|
jdict, stats, ap, ap_class = [], [], [], []
|
||||||
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
|
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
|
||||||
t_ = time_sync()
|
t1 = time_sync()
|
||||||
img = img.to(device, non_blocking=True)
|
img = img.to(device, non_blocking=True)
|
||||||
img = img.half() if half else img.float() # uint8 to fp16/32
|
img = img.half() if half else img.float() # uint8 to fp16/32
|
||||||
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
||||||
targets = targets.to(device)
|
targets = targets.to(device)
|
||||||
nb, _, height, width = img.shape # batch size, channels, height, width
|
nb, _, height, width = img.shape # batch size, channels, height, width
|
||||||
t = time_sync()
|
t2 = time_sync()
|
||||||
t0 += t - t_
|
dt[0] += t2 - t1
|
||||||
|
|
||||||
# Run model
|
# Run model
|
||||||
out, train_out = model(img, augment=augment) # inference and training outputs
|
out, train_out = model(img, augment=augment) # inference and training outputs
|
||||||
t1 += time_sync() - t
|
dt[1] += time_sync() - t2
|
||||||
|
|
||||||
# Compute loss
|
# Compute loss
|
||||||
if compute_loss:
|
if compute_loss:
|
||||||
@ -178,9 +178,9 @@ def run(data,
|
|||||||
# Run NMS
|
# Run NMS
|
||||||
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
|
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
|
||||||
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
|
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
|
||||||
t = time_sync()
|
t3 = time_sync()
|
||||||
out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
|
out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
|
||||||
t2 += time_sync() - t
|
dt[2] += time_sync() - t3
|
||||||
|
|
||||||
# Statistics per image
|
# Statistics per image
|
||||||
for si, pred in enumerate(out):
|
for si, pred in enumerate(out):
|
||||||
@ -247,7 +247,7 @@ def run(data,
|
|||||||
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
|
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
|
||||||
|
|
||||||
# Print speeds
|
# Print speeds
|
||||||
t = tuple(x / seen * 1E3 for x in (t0, t1, t2)) # speeds per image
|
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
|
||||||
if not training:
|
if not training:
|
||||||
shape = (batch_size, 3, imgsz, imgsz)
|
shape = (batch_size, 3, imgsz, imgsz)
|
||||||
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
|
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user