--notest bug fix (#518)
* Fix missing results_file and fi when notest passed * Update train.py reverting previous changes and removing functionality from 'if not opt.notest or final_epoch: # Calculate mAP' loop. Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>pull/519/head
parent
fd532d9ce3
commit
7f8471eaeb
32
train.py
32
train.py
|
@ -346,24 +346,24 @@ def train(hyp, tb_writer, opt, device):
|
|||
dataloader=testloader,
|
||||
save_dir=log_dir)
|
||||
|
||||
# Write
|
||||
with open(results_file, 'a') as f:
|
||||
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
|
||||
if len(opt.name) and opt.bucket:
|
||||
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
|
||||
# Write
|
||||
with open(results_file, 'a') as f:
|
||||
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
|
||||
if len(opt.name) and opt.bucket:
|
||||
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
|
||||
|
||||
# Tensorboard
|
||||
if tb_writer:
|
||||
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
|
||||
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
|
||||
'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
|
||||
for x, tag in zip(list(mloss[:-1]) + list(results), tags):
|
||||
tb_writer.add_scalar(tag, x, epoch)
|
||||
# Tensorboard
|
||||
if tb_writer:
|
||||
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
|
||||
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
|
||||
'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
|
||||
for x, tag in zip(list(mloss[:-1]) + list(results), tags):
|
||||
tb_writer.add_scalar(tag, x, epoch)
|
||||
|
||||
# Update best mAP
|
||||
fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1]
|
||||
if fi > best_fitness:
|
||||
best_fitness = fi
|
||||
# Update best mAP
|
||||
fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1]
|
||||
if fi > best_fitness:
|
||||
best_fitness = fi
|
||||
|
||||
# Save model
|
||||
save = (not opt.nosave) or (final_epoch and not opt.evolve)
|
||||
|
|
Loading…
Reference in New Issue