Update `export.py` with Detect, Validate usages (#6280)
parent
f3085accd3
commit
80473a6551
53
export.py
53
export.py
|
@ -82,6 +82,7 @@ def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:'
|
|||
ts.save(str(f), _extra_files=extra_files)
|
||||
|
||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
return f
|
||||
except Exception as e:
|
||||
LOGGER.info(f'{prefix} export failure: {e}')
|
||||
|
||||
|
@ -125,7 +126,7 @@ def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorst
|
|||
except Exception as e:
|
||||
LOGGER.info(f'{prefix} simplifier failure: {e}')
|
||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
LOGGER.info(f"{prefix} run --dynamic ONNX model inference with: 'python detect.py --weights {f}'")
|
||||
return f
|
||||
except Exception as e:
|
||||
LOGGER.info(f'{prefix} export failure: {e}')
|
||||
|
||||
|
@ -143,13 +144,13 @@ def export_openvino(model, im, file, prefix=colorstr('OpenVINO:')):
|
|||
subprocess.check_output(cmd, shell=True)
|
||||
|
||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
return f
|
||||
except Exception as e:
|
||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
||||
|
||||
|
||||
def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
|
||||
# YOLOv5 CoreML export
|
||||
ct_model = None
|
||||
try:
|
||||
check_requirements(('coremltools',))
|
||||
import coremltools as ct
|
||||
|
@ -162,10 +163,10 @@ def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
|
|||
ct_model.save(f)
|
||||
|
||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
return ct_model, f
|
||||
except Exception as e:
|
||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
||||
|
||||
return ct_model
|
||||
return None, None
|
||||
|
||||
|
||||
def export_engine(model, im, file, train, half, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
|
||||
|
@ -216,7 +217,7 @@ def export_engine(model, im, file, train, half, simplify, workspace=4, verbose=F
|
|||
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
|
||||
t.write(engine.serialize())
|
||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
|
||||
return f
|
||||
except Exception as e:
|
||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
||||
|
||||
|
@ -225,7 +226,6 @@ def export_saved_model(model, im, file, dynamic,
|
|||
tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
|
||||
conf_thres=0.25, prefix=colorstr('TensorFlow SavedModel:')):
|
||||
# YOLOv5 TensorFlow SavedModel export
|
||||
keras_model = None
|
||||
try:
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
|
@ -247,10 +247,10 @@ def export_saved_model(model, im, file, dynamic,
|
|||
keras_model.save(f, save_format='tf')
|
||||
|
||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
return keras_model, f
|
||||
except Exception as e:
|
||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
||||
|
||||
return keras_model
|
||||
return None, None
|
||||
|
||||
|
||||
def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')):
|
||||
|
@ -269,6 +269,7 @@ def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')):
|
|||
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
||||
|
||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
return f
|
||||
except Exception as e:
|
||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
||||
|
||||
|
@ -300,7 +301,7 @@ def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('Te
|
|||
tflite_model = converter.convert()
|
||||
open(f, "wb").write(tflite_model)
|
||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
|
||||
return f
|
||||
except Exception as e:
|
||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
||||
|
||||
|
@ -328,6 +329,7 @@ def export_edgetpu(keras_model, im, file, prefix=colorstr('Edge TPU:')):
|
|||
subprocess.run(cmd, shell=True, check=True)
|
||||
|
||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
return f
|
||||
except Exception as e:
|
||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
||||
|
||||
|
@ -364,6 +366,7 @@ def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
|
|||
j.write(subst)
|
||||
|
||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
return f
|
||||
except Exception as e:
|
||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
||||
|
||||
|
@ -431,15 +434,15 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
|||
|
||||
# Exports
|
||||
if 'torchscript' in include:
|
||||
export_torchscript(model, im, file, optimize)
|
||||
f = export_torchscript(model, im, file, optimize)
|
||||
if 'engine' in include: # TensorRT required before ONNX
|
||||
export_engine(model, im, file, train, half, simplify, workspace, verbose)
|
||||
f = export_engine(model, im, file, train, half, simplify, workspace, verbose)
|
||||
if ('onnx' in include) or ('openvino' in include): # OpenVINO requires ONNX
|
||||
export_onnx(model, im, file, opset, train, dynamic, simplify)
|
||||
f = export_onnx(model, im, file, opset, train, dynamic, simplify)
|
||||
if 'openvino' in include:
|
||||
export_openvino(model, im, file)
|
||||
f = export_openvino(model, im, file)
|
||||
if 'coreml' in include:
|
||||
export_coreml(model, im, file)
|
||||
_, f = export_coreml(model, im, file)
|
||||
|
||||
# TensorFlow Exports
|
||||
if any(tf_exports):
|
||||
|
@ -447,22 +450,26 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
|||
if int8 or edgetpu: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707
|
||||
check_requirements(('flatbuffers==1.12',)) # required before `import tensorflow`
|
||||
assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
||||
model = export_saved_model(model, im, file, dynamic, tf_nms=nms or agnostic_nms or tfjs,
|
||||
agnostic_nms=agnostic_nms or tfjs, topk_per_class=topk_per_class, topk_all=topk_all,
|
||||
conf_thres=conf_thres, iou_thres=iou_thres) # keras model
|
||||
model, f = export_saved_model(model, im, file, dynamic, tf_nms=nms or agnostic_nms or tfjs,
|
||||
agnostic_nms=agnostic_nms or tfjs, topk_per_class=topk_per_class,
|
||||
topk_all=topk_all,
|
||||
conf_thres=conf_thres, iou_thres=iou_thres) # keras model
|
||||
if pb or tfjs: # pb prerequisite to tfjs
|
||||
export_pb(model, im, file)
|
||||
f = export_pb(model, im, file)
|
||||
if tflite or edgetpu:
|
||||
export_tflite(model, im, file, int8=int8 or edgetpu, data=data, ncalib=100)
|
||||
f = export_tflite(model, im, file, int8=int8 or edgetpu, data=data, ncalib=100)
|
||||
if edgetpu:
|
||||
export_edgetpu(model, im, file)
|
||||
f = export_edgetpu(model, im, file)
|
||||
if tfjs:
|
||||
export_tfjs(model, im, file)
|
||||
f = export_tfjs(model, im, file)
|
||||
|
||||
# Finish
|
||||
LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)'
|
||||
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
||||
f'\nVisualize with https://netron.app')
|
||||
f"\nVisualize with https://netron.app"
|
||||
f"\nDetect with `python detect.py --weights {f}`"
|
||||
f" or `model = torch.hub.load('ultralytics/yolov5', 'custom', '{f}')"
|
||||
f"\nValidate with `python val.py --weights {f}`")
|
||||
|
||||
|
||||
def parse_opt():
|
||||
|
@ -490,7 +497,7 @@ def parse_opt():
|
|||
parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
|
||||
parser.add_argument('--include', nargs='+',
|
||||
default=['torchscript', 'onnx'],
|
||||
help='available formats are (torchscript, onnx, engine, coreml, saved_model, pb, tflite, tfjs)')
|
||||
help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs')
|
||||
opt = parser.parse_args()
|
||||
print_args(FILE.stem, opt)
|
||||
return opt
|
||||
|
|
Loading…
Reference in New Issue