README Segmentation Usage fixes (#10298)

Fixes per https://github.com/ultralytics/yolov5/issues/10288

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/10303/head
Glenn Jocher 2022-11-26 06:06:22 +01:00 committed by GitHub
parent 31c1f11186
commit 85f8379a68
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 3 additions and 3 deletions

View File

@ -89,14 +89,14 @@ YOLOv5 segmentation training supports auto-download COCO128-seg segmentation dat
```bash
# Single-GPU
python segment/train.py --model yolov5s-seg.pt --data coco128-seg.yaml --epochs 5 --img 640
python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
# Multi-GPU DDP
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --model yolov5s-seg.pt --data coco128-seg.yaml --epochs 5 --img 640 --device 0,1,2,3
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
```
### Val
Validate YOLOv5m-seg accuracy on ImageNet-1k dataset:
Validate YOLOv5s-seg mask mAP on COCO dataset:
```bash
bash data/scripts/get_coco.sh --val --segments # download COCO val segments split (780MB, 5000 images)
python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # validate