Auto-format by https://ultralytics.com/actions
parent
c6c6f3dd07
commit
866e022e21
10
README.md
10
README.md
|
@ -222,7 +222,7 @@ Explore Ultralytics' key integrations with leading AI platforms. These collabora
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
| Ultralytics HUB 🚀 | W&B | Comet ⭐ NEW | Neural Magic |
|
| Ultralytics HUB 🚀 | W&B | Comet ⭐ NEW | Neural Magic |
|
||||||
| :--------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
|
| :--------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------: |
|
||||||
| Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://www.ultralytics.com/hub). Try now! | Track experiments, hyperparameters, and results seamlessly with [Weights & Biases](https://docs.wandb.ai/guides/integrations/ultralytics/). | Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLOv5 models, resume training, and interactively visualize and debug predictions. | Run YOLOv5 inference up to 6x faster on CPUs with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic). |
|
| Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://www.ultralytics.com/hub). Try now! | Track experiments, hyperparameters, and results seamlessly with [Weights & Biases](https://docs.wandb.ai/guides/integrations/ultralytics/). | Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLOv5 models, resume training, and interactively visualize and debug predictions. | Run YOLOv5 inference up to 6x faster on CPUs with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic). |
|
||||||
|
|
||||||
## ⭐ Ultralytics HUB
|
## ⭐ Ultralytics HUB
|
||||||
|
@ -257,7 +257,7 @@ YOLOv5 is designed for simplicity and ease of use. We prioritize real-world perf
|
||||||
This table shows the performance metrics for various YOLOv5 models trained on the COCO dataset.
|
This table shows the performance metrics for various YOLOv5 models trained on the COCO dataset.
|
||||||
|
|
||||||
| Model | Size<br><sup>(pixels) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | Speed<br><sup>CPU b1<br>(ms) | Speed<br><sup>V100 b1<br>(ms) | Speed<br><sup>V100 b32<br>(ms) | Params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
|
| Model | Size<br><sup>(pixels) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | Speed<br><sup>CPU b1<br>(ms) | Speed<br><sup>V100 b1<br>(ms) | Speed<br><sup>V100 b32<br>(ms) | Params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
|
||||||
| ----------------------------------------------------------------------------------------------- | --------------------- | -------------------- | ----------------- | ---------------------------- | ----------------------------- | ------------------------------ | ------------------ | ---------------------- |
|
| ------------------------------------------------------------------------------------------------------ | --------------------- | -------------------- | ----------------- | ---------------------------- | ----------------------------- | ------------------------------ | ------------------ | ---------------------- |
|
||||||
| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** |
|
| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** |
|
||||||
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
|
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
|
||||||
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
|
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
|
||||||
|
@ -347,13 +347,11 @@ python segment/predict.py --weights yolov5m-seg.pt --source data/images/bus.jpg
|
||||||
|
|
||||||
```python
|
```python
|
||||||
# Load model from PyTorch Hub (Note: Inference support might vary)
|
# Load model from PyTorch Hub (Note: Inference support might vary)
|
||||||
model = torch.hub.load(
|
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5m-seg.pt")
|
||||||
"ultralytics/yolov5", "custom", "yolov5m-seg.pt"
|
|
||||||
)
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|  |  |
|
|  |  |
|
||||||
| :---------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------: |
|
| :-----------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------: |
|
||||||
|
|
||||||
### Export
|
### Export
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Run YOLOv5 benchmarks on all supported export formats.
|
Run YOLOv5 benchmarks on all supported export formats.
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
|
Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Train a YOLOv5 classifier model on a classification dataset.
|
Train a YOLOv5 classifier model on a classification dataset.
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Validate a trained YOLOv5 classification model on a classification dataset.
|
Validate a trained YOLOv5 classification model on a classification dataset.
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
|
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit.
|
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit.
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""
|
"""
|
||||||
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5.
|
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5.
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Common modules."""
|
"""Common modules."""
|
||||||
|
|
||||||
import ast
|
import ast
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Experimental modules."""
|
"""Experimental modules."""
|
||||||
|
|
||||||
import math
|
import math
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""
|
"""
|
||||||
TensorFlow, Keras and TFLite versions of YOLOv5
|
TensorFlow, Keras and TFLite versions of YOLOv5
|
||||||
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127.
|
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127.
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""
|
"""
|
||||||
YOLO-specific modules.
|
YOLO-specific modules.
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Run YOLOv5 segmentation inference on images, videos, directories, streams, etc.
|
Run YOLOv5 segmentation inference on images, videos, directories, streams, etc.
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Train a YOLOv5 segment model on a segment dataset Models and datasets download automatically from the latest YOLOv5
|
Train a YOLOv5 segment model on a segment dataset Models and datasets download automatically from the latest YOLOv5
|
||||||
release.
|
release.
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Validate a trained YOLOv5 segment model on a segment dataset.
|
Validate a trained YOLOv5 segment model on a segment dataset.
|
||||||
|
|
||||||
|
|
1
train.py
1
train.py
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Train a YOLOv5 model on a custom dataset. Models and datasets download automatically from the latest YOLOv5 release.
|
Train a YOLOv5 model on a custom dataset. Models and datasets download automatically from the latest YOLOv5 release.
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""utils/initialization."""
|
"""utils/initialization."""
|
||||||
|
|
||||||
import contextlib
|
import contextlib
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Activation functions."""
|
"""Activation functions."""
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Image augmentation functions."""
|
"""Image augmentation functions."""
|
||||||
|
|
||||||
import math
|
import math
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""AutoAnchor utils."""
|
"""AutoAnchor utils."""
|
||||||
|
|
||||||
import random
|
import random
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Auto-batch utils."""
|
"""Auto-batch utils."""
|
||||||
|
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Callback utils."""
|
"""Callback utils."""
|
||||||
|
|
||||||
import threading
|
import threading
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Dataloaders and dataset utils."""
|
"""Dataloaders and dataset utils."""
|
||||||
|
|
||||||
import contextlib
|
import contextlib
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Download utils."""
|
"""Download utils."""
|
||||||
|
|
||||||
import logging
|
import logging
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Perform test request."""
|
"""Perform test request."""
|
||||||
|
|
||||||
import pprint
|
import pprint
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Run a Flask REST API exposing one or more YOLOv5s models."""
|
"""Run a Flask REST API exposing one or more YOLOv5s models."""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""General utils."""
|
"""General utils."""
|
||||||
|
|
||||||
import contextlib
|
import contextlib
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Logging utils."""
|
"""Logging utils."""
|
||||||
|
|
||||||
import json
|
import json
|
||||||
|
|
|
@ -28,10 +28,12 @@ ClearML requires communication with a server to track experiments and data. You
|
||||||
Follow these steps to get started:
|
Follow these steps to get started:
|
||||||
|
|
||||||
1. Install the `clearml` Python package:
|
1. Install the `clearml` Python package:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
pip install clearml
|
pip install clearml
|
||||||
```
|
```
|
||||||
*Note: This package is included in the `requirements.txt` of YOLOv5.*
|
|
||||||
|
_Note: This package is included in the `requirements.txt` of YOLOv5._
|
||||||
|
|
||||||
2. Connect the ClearML SDK to your server. [Create credentials](https://app.clear.ml/settings/workspace-configuration) (Settings -> Workspace -> Create new credentials), then run the following command and follow the prompts:
|
2. Connect the ClearML SDK to your server. [Create credentials](https://app.clear.ml/settings/workspace-configuration) (Settings -> Workspace -> Create new credentials), then run the following command and follow the prompts:
|
||||||
```bash
|
```bash
|
||||||
|
@ -133,7 +135,8 @@ clearml-data add --files .
|
||||||
# Finalize and upload the dataset version
|
# Finalize and upload the dataset version
|
||||||
clearml-data close
|
clearml-data close
|
||||||
```
|
```
|
||||||
*Tip: Use `--parent <parent_dataset_id>` with `clearml-data create` to link versions and avoid re-uploading unchanged files.*
|
|
||||||
|
_Tip: Use `--parent <parent_dataset_id>` with `clearml-data create` to link versions and avoid re-uploading unchanged files._
|
||||||
|
|
||||||
### Run Training Using a ClearML Dataset
|
### Run Training Using a ClearML Dataset
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Main Logger class for ClearML experiment tracking."""
|
"""Main Logger class for ClearML experiment tracking."""
|
||||||
|
|
||||||
import glob
|
import glob
|
||||||
|
|
|
@ -29,10 +29,12 @@ pip install comet_ml
|
||||||
You can configure Comet in two ways:
|
You can configure Comet in two ways:
|
||||||
|
|
||||||
1. **Environment Variables:** Set your credentials directly in your environment.
|
1. **Environment Variables:** Set your credentials directly in your environment.
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
export COMET_API_KEY=<Your Comet API Key>
|
export COMET_API_KEY=<Your Comet API Key>
|
||||||
export COMET_PROJECT_NAME=<Your Comet Project Name> # Defaults to 'yolov5' if not set
|
export COMET_PROJECT_NAME=<Your Comet Project Name> # Defaults to 'yolov5' if not set
|
||||||
```
|
```
|
||||||
|
|
||||||
Find your API key in your [Comet Account Settings](https://www.comet.com/docs/v2/guides/getting-started/quickstart/#get-an-api-key?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github_readme).
|
Find your API key in your [Comet Account Settings](https://www.comet.com/docs/v2/guides/getting-started/quickstart/#get-an-api-key?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github_readme).
|
||||||
|
|
||||||
2. **Configuration File:** Create a `.comet.config` file in your working directory with the following content:
|
2. **Configuration File:** Create a `.comet.config` file in your working directory with the following content:
|
||||||
|
@ -259,8 +261,8 @@ python utils/loggers/comet/hpo.py \
|
||||||
Execute multiple sweep trials concurrently using the `comet optimizer` command:
|
Execute multiple sweep trials concurrently using the `comet optimizer` command:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
comet optimizer -j <num_workers> utils/loggers/comet/hpo.py \
|
comet optimizer -j \
|
||||||
utils/loggers/comet/optimizer_config.json
|
utils/loggers/comet/optimizer_config.json < num_workers > utils/loggers/comet/hpo.py
|
||||||
```
|
```
|
||||||
|
|
||||||
Replace `<num_workers>` with the desired number of parallel processes.
|
Replace `<num_workers>` with the desired number of parallel processes.
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Loss functions."""
|
"""Loss functions."""
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Model validation metrics."""
|
"""Model validation metrics."""
|
||||||
|
|
||||||
import math
|
import math
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Plotting utils."""
|
"""Plotting utils."""
|
||||||
|
|
||||||
import contextlib
|
import contextlib
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Image augmentation functions."""
|
"""Image augmentation functions."""
|
||||||
|
|
||||||
import math
|
import math
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Dataloaders."""
|
"""Dataloaders."""
|
||||||
|
|
||||||
import os
|
import os
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Model validation metrics."""
|
"""Model validation metrics."""
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""PyTorch utils."""
|
"""PyTorch utils."""
|
||||||
|
|
||||||
import math
|
import math
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""Utils to interact with the Triton Inference Server."""
|
"""Utils to interact with the Triton Inference Server."""
|
||||||
|
|
||||||
import typing
|
import typing
|
||||||
|
|
1
val.py
1
val.py
|
@ -1,5 +1,4 @@
|
||||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Validate a trained YOLOv5 detection model on a detection dataset.
|
Validate a trained YOLOv5 detection model on a detection dataset.
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue