classifier, export, torch seed updates

pull/1098/head
Glenn Jocher 2020-10-06 14:54:02 +02:00
parent c5d2331897
commit 883924d9dc
3 changed files with 22 additions and 18 deletions

View File

@ -6,6 +6,7 @@ Usage:
import argparse
import sys
import time
sys.path.append('./') # to run '$ python *.py' files in subdirectories
@ -15,7 +16,7 @@ import torch.nn as nn
import models
from models.experimental import attempt_load
from utils.activations import Hardswish
from utils.general import set_logging
from utils.general import set_logging, check_img_size
if __name__ == '__main__':
parser = argparse.ArgumentParser()
@ -26,16 +27,22 @@ if __name__ == '__main__':
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
print(opt)
set_logging()
t = time.time()
# Input
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection
# Load PyTorch model
model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model
labels = model.names
# Checks
gs = int(max(model.stride)) # grid size (max stride)
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
# Update model
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if isinstance(m, models.common.Conv) and isinstance(m.act, nn.Hardswish):
m.act = Hardswish() # assign activation
# if isinstance(m, models.yolo.Detect):
@ -76,7 +83,7 @@ if __name__ == '__main__':
print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
# convert model from torchscript and apply pixel scaling as per detect.py
model = ct.convert(ts, inputs=[ct.ImageType(name='images', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
f = opt.weights.replace('.pt', '.mlmodel') # filename
model.save(f)
print('CoreML export success, saved as %s' % f)
@ -84,4 +91,4 @@ if __name__ == '__main__':
print('CoreML export failure: %s' % e)
# Finish
print('\nExport complete. Visualize with https://github.com/lutzroeder/netron.')
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))

View File

@ -23,8 +23,7 @@ from scipy.signal import butter, filtfilt
from tqdm import tqdm
from utils.google_utils import gsutil_getsize
from utils.torch_utils import init_seeds as init_torch_seeds
from utils.torch_utils import is_parallel
from utils.torch_utils import is_parallel, init_torch_seeds
# Set printoptions
torch.set_printoptions(linewidth=320, precision=5, profile='long')
@ -56,7 +55,7 @@ def set_logging(rank=-1):
def init_seeds(seed=0):
random.seed(seed)
np.random.seed(seed)
init_torch_seeds(seed=seed)
init_torch_seeds(seed)
def get_latest_run(search_dir='./runs'):

View File

@ -8,12 +8,11 @@ import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
logger = logging.getLogger(__name__)
def init_seeds(seed=0):
def init_torch_seeds(seed=0):
torch.manual_seed(seed)
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
@ -152,16 +151,15 @@ def model_info(model, verbose=False):
def load_classifier(name='resnet101', n=2):
# Loads a pretrained model reshaped to n-class output
model = models.__dict__[name](pretrained=True)
import torchvision
model = torchvision.models.__dict__[name](pretrained=True)
# Display model properties
input_size = [3, 224, 224]
input_space = 'RGB'
input_range = [0, 1]
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
for x in ['input_size', 'input_space', 'input_range', 'mean', 'std']:
print(x + ' =', eval(x))
# ResNet model properties
# input_size = [3, 224, 224]
# input_space = 'RGB'
# input_range = [0, 1]
# mean = [0.485, 0.456, 0.406]
# std = [0.229, 0.224, 0.225]
# Reshape output to n classes
filters = model.fc.weight.shape[1]