Add Multi-Node support for DDP Training (#504)
* Add support for multi-node DDP * Remove local_rank confusion * Fix spacingpull/660/head^2
parent
7eaf225d55
commit
886b9841c8
15
train.py
15
train.py
|
@ -62,9 +62,9 @@ def train(hyp, opt, device, tb_writer=None):
|
|||
best = wdir + 'best.pt'
|
||||
results_file = log_dir + os.sep + 'results.txt'
|
||||
epochs, batch_size, total_batch_size, weights, rank = \
|
||||
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.local_rank
|
||||
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
|
||||
|
||||
# TODO: Use DDP logging. Only the first process is allowed to log.
|
||||
|
||||
# Save run settings
|
||||
with open(Path(log_dir) / 'hyp.yaml', 'w') as f:
|
||||
yaml.dump(hyp, f, sort_keys=False)
|
||||
|
@ -184,7 +184,7 @@ def train(hyp, opt, device, tb_writer=None):
|
|||
|
||||
# DDP mode
|
||||
if cuda and rank != -1:
|
||||
model = DDP(model, device_ids=[rank], output_device=rank)
|
||||
model = DDP(model, device_ids=[opt.local_rank], output_device=(opt.local_rank))
|
||||
|
||||
# Trainloader
|
||||
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True,
|
||||
|
@ -441,8 +441,7 @@ if __name__ == '__main__':
|
|||
if last and not opt.weights:
|
||||
print(f'Resuming training from {last}')
|
||||
opt.weights = last if opt.resume and not opt.weights else opt.weights
|
||||
|
||||
if opt.local_rank in [-1, 0]:
|
||||
if opt.local_rank == -1 or ("RANK" in os.environ and os.environ["RANK"] == "0"):
|
||||
check_git_status()
|
||||
opt.cfg = check_file(opt.cfg) # check file
|
||||
opt.data = check_file(opt.data) # check file
|
||||
|
@ -454,7 +453,8 @@ if __name__ == '__main__':
|
|||
device = select_device(opt.device, batch_size=opt.batch_size)
|
||||
opt.total_batch_size = opt.batch_size
|
||||
opt.world_size = 1
|
||||
|
||||
opt.global_rank = -1
|
||||
|
||||
# DDP mode
|
||||
if opt.local_rank != -1:
|
||||
assert torch.cuda.device_count() > opt.local_rank
|
||||
|
@ -462,6 +462,7 @@ if __name__ == '__main__':
|
|||
device = torch.device('cuda', opt.local_rank)
|
||||
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
|
||||
opt.world_size = dist.get_world_size()
|
||||
opt.global_rank = dist.get_rank()
|
||||
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
|
||||
opt.batch_size = opt.total_batch_size // opt.world_size
|
||||
|
||||
|
@ -470,7 +471,7 @@ if __name__ == '__main__':
|
|||
# Train
|
||||
if not opt.evolve:
|
||||
tb_writer = None
|
||||
if opt.local_rank in [-1, 0]:
|
||||
if opt.global_rank in [-1, 0]:
|
||||
print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
|
||||
tb_writer = SummaryWriter(log_dir=increment_dir('runs/exp', opt.name))
|
||||
|
||||
|
|
Loading…
Reference in New Issue