DDP after autoanchor reorder (#2421)
parent
d5ca8ca34e
commit
886f1c03d8
10
train.py
10
train.py
|
@ -181,10 +181,6 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
|||
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
||||
logger.info('Using SyncBatchNorm()')
|
||||
|
||||
# DDP mode
|
||||
if cuda and rank != -1:
|
||||
model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)
|
||||
|
||||
# Trainloader
|
||||
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
|
||||
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
|
||||
|
@ -214,7 +210,11 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
|||
# Anchors
|
||||
if not opt.noautoanchor:
|
||||
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
|
||||
model.half().float() # pre-reduce anchor precision
|
||||
model.half().float() # pre-reduce anchor precision
|
||||
|
||||
# DDP mode
|
||||
if cuda and rank != -1:
|
||||
model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)
|
||||
|
||||
# Model parameters
|
||||
hyp['box'] *= 3. / nl # scale to layers
|
||||
|
|
Loading…
Reference in New Issue