.fuse() gradient introduction bug fix
parent
c4cb78570c
commit
89655a84f2
|
@ -104,28 +104,28 @@ def prune(model, amount=0.3):
|
||||||
|
|
||||||
|
|
||||||
def fuse_conv_and_bn(conv, bn):
|
def fuse_conv_and_bn(conv, bn):
|
||||||
# https://tehnokv.com/posts/fusing-batchnorm-and-conv/
|
# Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
|
||||||
with torch.no_grad():
|
|
||||||
# init
|
|
||||||
fusedconv = nn.Conv2d(conv.in_channels,
|
|
||||||
conv.out_channels,
|
|
||||||
kernel_size=conv.kernel_size,
|
|
||||||
stride=conv.stride,
|
|
||||||
padding=conv.padding,
|
|
||||||
groups=conv.groups,
|
|
||||||
bias=True).to(conv.weight.device)
|
|
||||||
|
|
||||||
# prepare filters
|
# init
|
||||||
w_conv = conv.weight.clone().view(conv.out_channels, -1)
|
fusedconv = nn.Conv2d(conv.in_channels,
|
||||||
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
conv.out_channels,
|
||||||
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
|
kernel_size=conv.kernel_size,
|
||||||
|
stride=conv.stride,
|
||||||
|
padding=conv.padding,
|
||||||
|
groups=conv.groups,
|
||||||
|
bias=True).requires_grad_(False).to(conv.weight.device)
|
||||||
|
|
||||||
# prepare spatial bias
|
# prepare filters
|
||||||
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
|
w_conv = conv.weight.clone().view(conv.out_channels, -1)
|
||||||
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
||||||
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
|
||||||
|
|
||||||
return fusedconv
|
# prepare spatial bias
|
||||||
|
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
|
||||||
|
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
||||||
|
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
||||||
|
|
||||||
|
return fusedconv
|
||||||
|
|
||||||
|
|
||||||
def model_info(model, verbose=False):
|
def model_info(model, verbose=False):
|
||||||
|
|
Loading…
Reference in New Issue