update mosaic border
parent
77fb8ee082
commit
93a6765806
|
@ -62,7 +62,7 @@ def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=Fa
|
|||
|
||||
|
||||
class LoadImages: # for inference
|
||||
def __init__(self, path, img_size=416):
|
||||
def __init__(self, path, img_size=640):
|
||||
path = str(Path(path)) # os-agnostic
|
||||
files = []
|
||||
if os.path.isdir(path):
|
||||
|
@ -139,7 +139,7 @@ class LoadImages: # for inference
|
|||
|
||||
|
||||
class LoadWebcam: # for inference
|
||||
def __init__(self, pipe=0, img_size=416):
|
||||
def __init__(self, pipe=0, img_size=640):
|
||||
self.img_size = img_size
|
||||
|
||||
if pipe == '0':
|
||||
|
@ -204,7 +204,7 @@ class LoadWebcam: # for inference
|
|||
|
||||
|
||||
class LoadStreams: # multiple IP or RTSP cameras
|
||||
def __init__(self, sources='streams.txt', img_size=416):
|
||||
def __init__(self, sources='streams.txt', img_size=640):
|
||||
self.mode = 'images'
|
||||
self.img_size = img_size
|
||||
|
||||
|
@ -277,7 +277,7 @@ class LoadStreams: # multiple IP or RTSP cameras
|
|||
|
||||
|
||||
class LoadImagesAndLabels(Dataset): # for training/testing
|
||||
def __init__(self, path, img_size=416, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
|
||||
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
|
||||
cache_images=False, single_cls=False, stride=32, pad=0.0):
|
||||
try:
|
||||
path = str(Path(path)) # os-agnostic
|
||||
|
@ -307,6 +307,9 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||
self.image_weights = image_weights
|
||||
self.rect = False if image_weights else rect
|
||||
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
|
||||
self.mosaic_border = None
|
||||
self.stride = stride
|
||||
|
||||
|
||||
# Define labels
|
||||
self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt')
|
||||
|
@ -585,7 +588,8 @@ def load_mosaic(self, index):
|
|||
|
||||
labels4 = []
|
||||
s = self.img_size
|
||||
xc, yc = [int(random.uniform(s * 0.5, s * 1.5)) for _ in range(2)] # mosaic center x, y
|
||||
border = [-s // 2, -s // 2] # self.mosaic_border
|
||||
yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in border] # mosaic center x, y
|
||||
indices = [index] + [random.randint(0, len(self.labels) - 1) for _ in range(3)] # 3 additional image indices
|
||||
for i, index in enumerate(indices):
|
||||
# Load image
|
||||
|
@ -633,12 +637,12 @@ def load_mosaic(self, index):
|
|||
translate=self.hyp['translate'],
|
||||
scale=self.hyp['scale'],
|
||||
shear=self.hyp['shear'],
|
||||
border=-s // 2) # border to remove
|
||||
border=border) # border to remove
|
||||
|
||||
return img4, labels4
|
||||
|
||||
|
||||
def letterbox(img, new_shape=(416, 416), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
|
||||
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
|
||||
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
|
||||
shape = img.shape[:2] # current shape [height, width]
|
||||
if isinstance(new_shape, int):
|
||||
|
@ -671,13 +675,13 @@ def letterbox(img, new_shape=(416, 416), color=(114, 114, 114), auto=True, scale
|
|||
return img, ratio, (dw, dh)
|
||||
|
||||
|
||||
def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, border=0):
|
||||
def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, border=(0, 0)):
|
||||
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
|
||||
# https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4
|
||||
# targets = [cls, xyxy]
|
||||
|
||||
height = img.shape[0] + border * 2
|
||||
width = img.shape[1] + border * 2
|
||||
height = img.shape[0] + border[0] * 2 # shape(h,w,c)
|
||||
width = img.shape[1] + border[1] * 2
|
||||
|
||||
# Rotation and Scale
|
||||
R = np.eye(3)
|
||||
|
@ -689,8 +693,8 @@ def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10,
|
|||
|
||||
# Translation
|
||||
T = np.eye(3)
|
||||
T[0, 2] = random.uniform(-translate, translate) * img.shape[0] + border # x translation (pixels)
|
||||
T[1, 2] = random.uniform(-translate, translate) * img.shape[1] + border # y translation (pixels)
|
||||
T[0, 2] = random.uniform(-translate, translate) * img.shape[1] + border[1] # x translation (pixels)
|
||||
T[1, 2] = random.uniform(-translate, translate) * img.shape[0] + border[0] # y translation (pixels)
|
||||
|
||||
# Shear
|
||||
S = np.eye(3)
|
||||
|
@ -699,7 +703,7 @@ def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10,
|
|||
|
||||
# Combined rotation matrix
|
||||
M = S @ T @ R # ORDER IS IMPORTANT HERE!!
|
||||
if (border != 0) or (M != np.eye(3)).any(): # image changed
|
||||
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
||||
img = cv2.warpAffine(img, M[:2], dsize=(width, height), flags=cv2.INTER_LINEAR, borderValue=(114, 114, 114))
|
||||
|
||||
# Transform label coordinates
|
||||
|
|
Loading…
Reference in New Issue