Cat apriori to autolabels (#1484)
parent
201bafc7cf
commit
95fa65339f
|
@ -137,7 +137,8 @@ def detect(save_img=False):
|
|||
vid_writer.write(im0)
|
||||
|
||||
if save_txt or save_img:
|
||||
print('Results saved to %s' % save_dir)
|
||||
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
||||
print(f"Results saved to {save_dir}{s}")
|
||||
|
||||
print('Done. (%.3fs)' % (time.time() - t0))
|
||||
|
||||
|
|
13
test.py
13
test.py
|
@ -101,9 +101,8 @@ def test(data,
|
|||
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
||||
targets = targets.to(device)
|
||||
nb, _, height, width = img.shape # batch size, channels, height, width
|
||||
whwh = torch.Tensor([width, height, width, height]).to(device)
|
||||
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device)
|
||||
|
||||
# Disable gradients
|
||||
with torch.no_grad():
|
||||
# Run model
|
||||
t = time_synchronized()
|
||||
|
@ -111,12 +110,13 @@ def test(data,
|
|||
t0 += time_synchronized() - t
|
||||
|
||||
# Compute loss
|
||||
if training: # if model has loss hyperparameters
|
||||
if training:
|
||||
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls
|
||||
|
||||
# Run NMS
|
||||
t = time_synchronized()
|
||||
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres)
|
||||
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_txt else [] # for autolabelling
|
||||
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb)
|
||||
t1 += time_synchronized() - t
|
||||
|
||||
# Statistics per image
|
||||
|
@ -174,7 +174,7 @@ def test(data,
|
|||
tcls_tensor = labels[:, 0]
|
||||
|
||||
# target boxes
|
||||
tbox = xywh2xyxy(labels[:, 1:5]) * whwh
|
||||
tbox = xywh2xyxy(labels[:, 1:5])
|
||||
scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
|
||||
|
||||
# Per target class
|
||||
|
@ -264,7 +264,8 @@ def test(data,
|
|||
|
||||
# Return results
|
||||
if not training:
|
||||
print('Results saved to %s' % save_dir)
|
||||
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
||||
print(f"Results saved to {save_dir}{s}")
|
||||
model.float() # for training
|
||||
maps = np.zeros(nc) + map
|
||||
for i, c in enumerate(ap_class):
|
||||
|
|
|
@ -263,7 +263,7 @@ def wh_iou(wh1, wh2):
|
|||
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
|
||||
|
||||
|
||||
def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, merge=False, classes=None, agnostic=False):
|
||||
def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, classes=None, agnostic=False, labels=()):
|
||||
"""Performs Non-Maximum Suppression (NMS) on inference results
|
||||
|
||||
Returns:
|
||||
|
@ -279,6 +279,7 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, merge=False,
|
|||
time_limit = 10.0 # seconds to quit after
|
||||
redundant = True # require redundant detections
|
||||
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
|
||||
merge = False # use merge-NMS
|
||||
|
||||
t = time.time()
|
||||
output = [torch.zeros(0, 6)] * prediction.shape[0]
|
||||
|
@ -287,6 +288,15 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, merge=False,
|
|||
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
||||
x = x[xc[xi]] # confidence
|
||||
|
||||
# Cat apriori labels if autolabelling
|
||||
if labels and len(labels[xi]):
|
||||
l = labels[xi]
|
||||
v = torch.zeros((len(l), nc + 5), device=x.device)
|
||||
v[:, :4] = l[:, 1:5] # box
|
||||
v[:, 4] = 1.0 # conf
|
||||
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
|
||||
x = torch.cat((x, v), 0)
|
||||
|
||||
# If none remain process next image
|
||||
if not x.shape[0]:
|
||||
continue
|
||||
|
|
Loading…
Reference in New Issue