TensorRT detect.py inference fix (#9581)

* Update

* Update ci-testing.yml

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update ci-testing.yml

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Segment fix

* Segment fix

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/9586/head
Glenn Jocher 2022-09-25 16:21:26 +02:00 committed by GitHub
parent 2787ad701f
commit 966b0e09f0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 13 additions and 4 deletions

View File

@ -44,6 +44,12 @@ jobs:
- name: Benchmark SegmentationModel
run: |
python benchmarks.py --data coco128-seg.yaml --weights ${{ matrix.model }}-seg.pt --img 320 --hard-fail 0.22
- name: Test predictions
run: |
python export.py --weights ${{ matrix.model }}-cls.pt --include onnx --img 224
python detect.py --weights ${{ matrix.model }}.onnx --img 320
python segment/predict.py --weights ${{ matrix.model }}-seg.onnx --img 320
python classify/predict.py --weights ${{ matrix.model }}-cls.onnx --img 224
Tests:
timeout-minutes: 60

View File

@ -89,14 +89,15 @@ def run(
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
bs = 1 # batch_size
if webcam:
view_img = check_imshow()
dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
bs = len(dataset)
elif screenshot:
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
else:
dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
bs = len(dataset) # batch_size
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference

View File

@ -97,14 +97,15 @@ def run(
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
bs = 1 # batch_size
if webcam:
view_img = check_imshow()
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
bs = len(dataset)
elif screenshot:
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
bs = len(dataset) # batch_size
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference

View File

@ -100,14 +100,15 @@ def run(
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
bs = 1 # batch_size
if webcam:
view_img = check_imshow()
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
bs = len(dataset)
elif screenshot:
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
bs = len(dataset) # batch_size
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
@ -179,7 +180,7 @@ def run(
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
annotator.box_label(xyxy, label, color=colors(c, True))
annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
# annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
if save_crop:
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)