TensorRT detect.py inference fix (#9581)
* Update * Update ci-testing.yml Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update ci-testing.yml Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Segment fix * Segment fix Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>pull/9586/head
parent
2787ad701f
commit
966b0e09f0
|
@ -44,6 +44,12 @@ jobs:
|
|||
- name: Benchmark SegmentationModel
|
||||
run: |
|
||||
python benchmarks.py --data coco128-seg.yaml --weights ${{ matrix.model }}-seg.pt --img 320 --hard-fail 0.22
|
||||
- name: Test predictions
|
||||
run: |
|
||||
python export.py --weights ${{ matrix.model }}-cls.pt --include onnx --img 224
|
||||
python detect.py --weights ${{ matrix.model }}.onnx --img 320
|
||||
python segment/predict.py --weights ${{ matrix.model }}-seg.onnx --img 320
|
||||
python classify/predict.py --weights ${{ matrix.model }}-cls.onnx --img 224
|
||||
|
||||
Tests:
|
||||
timeout-minutes: 60
|
||||
|
|
|
@ -89,14 +89,15 @@ def run(
|
|||
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||
|
||||
# Dataloader
|
||||
bs = 1 # batch_size
|
||||
if webcam:
|
||||
view_img = check_imshow()
|
||||
dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
|
||||
bs = len(dataset)
|
||||
elif screenshot:
|
||||
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
||||
else:
|
||||
dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
|
||||
bs = len(dataset) # batch_size
|
||||
vid_path, vid_writer = [None] * bs, [None] * bs
|
||||
|
||||
# Run inference
|
||||
|
|
|
@ -97,14 +97,15 @@ def run(
|
|||
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||
|
||||
# Dataloader
|
||||
bs = 1 # batch_size
|
||||
if webcam:
|
||||
view_img = check_imshow()
|
||||
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
||||
bs = len(dataset)
|
||||
elif screenshot:
|
||||
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
||||
else:
|
||||
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
||||
bs = len(dataset) # batch_size
|
||||
vid_path, vid_writer = [None] * bs, [None] * bs
|
||||
|
||||
# Run inference
|
||||
|
|
|
@ -100,14 +100,15 @@ def run(
|
|||
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||
|
||||
# Dataloader
|
||||
bs = 1 # batch_size
|
||||
if webcam:
|
||||
view_img = check_imshow()
|
||||
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
||||
bs = len(dataset)
|
||||
elif screenshot:
|
||||
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
||||
else:
|
||||
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
||||
bs = len(dataset) # batch_size
|
||||
vid_path, vid_writer = [None] * bs, [None] * bs
|
||||
|
||||
# Run inference
|
||||
|
@ -179,7 +180,7 @@ def run(
|
|||
c = int(cls) # integer class
|
||||
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
||||
annotator.box_label(xyxy, label, color=colors(c, True))
|
||||
annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
|
||||
# annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
|
||||
if save_crop:
|
||||
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
||||
|
||||
|
|
Loading…
Reference in New Issue