TensorRT detect.py inference fix (#9581)
* Update * Update ci-testing.yml Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update ci-testing.yml Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Segment fix * Segment fix Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>pull/9586/head
parent
2787ad701f
commit
966b0e09f0
|
@ -44,6 +44,12 @@ jobs:
|
||||||
- name: Benchmark SegmentationModel
|
- name: Benchmark SegmentationModel
|
||||||
run: |
|
run: |
|
||||||
python benchmarks.py --data coco128-seg.yaml --weights ${{ matrix.model }}-seg.pt --img 320 --hard-fail 0.22
|
python benchmarks.py --data coco128-seg.yaml --weights ${{ matrix.model }}-seg.pt --img 320 --hard-fail 0.22
|
||||||
|
- name: Test predictions
|
||||||
|
run: |
|
||||||
|
python export.py --weights ${{ matrix.model }}-cls.pt --include onnx --img 224
|
||||||
|
python detect.py --weights ${{ matrix.model }}.onnx --img 320
|
||||||
|
python segment/predict.py --weights ${{ matrix.model }}-seg.onnx --img 320
|
||||||
|
python classify/predict.py --weights ${{ matrix.model }}-cls.onnx --img 224
|
||||||
|
|
||||||
Tests:
|
Tests:
|
||||||
timeout-minutes: 60
|
timeout-minutes: 60
|
||||||
|
|
|
@ -89,14 +89,15 @@ def run(
|
||||||
imgsz = check_img_size(imgsz, s=stride) # check image size
|
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||||
|
|
||||||
# Dataloader
|
# Dataloader
|
||||||
|
bs = 1 # batch_size
|
||||||
if webcam:
|
if webcam:
|
||||||
view_img = check_imshow()
|
view_img = check_imshow()
|
||||||
dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
|
dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
|
||||||
|
bs = len(dataset)
|
||||||
elif screenshot:
|
elif screenshot:
|
||||||
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
||||||
else:
|
else:
|
||||||
dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
|
dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
|
||||||
bs = len(dataset) # batch_size
|
|
||||||
vid_path, vid_writer = [None] * bs, [None] * bs
|
vid_path, vid_writer = [None] * bs, [None] * bs
|
||||||
|
|
||||||
# Run inference
|
# Run inference
|
||||||
|
|
|
@ -97,14 +97,15 @@ def run(
|
||||||
imgsz = check_img_size(imgsz, s=stride) # check image size
|
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||||
|
|
||||||
# Dataloader
|
# Dataloader
|
||||||
|
bs = 1 # batch_size
|
||||||
if webcam:
|
if webcam:
|
||||||
view_img = check_imshow()
|
view_img = check_imshow()
|
||||||
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
||||||
|
bs = len(dataset)
|
||||||
elif screenshot:
|
elif screenshot:
|
||||||
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
||||||
else:
|
else:
|
||||||
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
||||||
bs = len(dataset) # batch_size
|
|
||||||
vid_path, vid_writer = [None] * bs, [None] * bs
|
vid_path, vid_writer = [None] * bs, [None] * bs
|
||||||
|
|
||||||
# Run inference
|
# Run inference
|
||||||
|
|
|
@ -100,14 +100,15 @@ def run(
|
||||||
imgsz = check_img_size(imgsz, s=stride) # check image size
|
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||||
|
|
||||||
# Dataloader
|
# Dataloader
|
||||||
|
bs = 1 # batch_size
|
||||||
if webcam:
|
if webcam:
|
||||||
view_img = check_imshow()
|
view_img = check_imshow()
|
||||||
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
||||||
|
bs = len(dataset)
|
||||||
elif screenshot:
|
elif screenshot:
|
||||||
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
||||||
else:
|
else:
|
||||||
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
||||||
bs = len(dataset) # batch_size
|
|
||||||
vid_path, vid_writer = [None] * bs, [None] * bs
|
vid_path, vid_writer = [None] * bs, [None] * bs
|
||||||
|
|
||||||
# Run inference
|
# Run inference
|
||||||
|
@ -179,7 +180,7 @@ def run(
|
||||||
c = int(cls) # integer class
|
c = int(cls) # integer class
|
||||||
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
||||||
annotator.box_label(xyxy, label, color=colors(c, True))
|
annotator.box_label(xyxy, label, color=colors(c, True))
|
||||||
annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
|
# annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
|
||||||
if save_crop:
|
if save_crop:
|
||||||
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue