Torch CUDA synchronize update ()

* torch.cuda.synchronize() update

* torch.cuda.synchronize() update

* torch.cuda.synchronize() update

* newline
pull/1836/head
Glenn Jocher 2021-01-03 11:23:12 -08:00 committed by GitHub
parent 0b6266f5e0
commit 9f5a18bb80
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 20 additions and 21 deletions

View File

@ -36,42 +36,41 @@ def init_torch_seeds(seed=0):
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
torch.manual_seed(seed)
if seed == 0: # slower, more reproducible
cudnn.deterministic = True
cudnn.benchmark = False
cudnn.benchmark, cudnn.deterministic = False, True
else: # faster, less reproducible
cudnn.deterministic = False
cudnn.benchmark = True
cudnn.benchmark, cudnn.deterministic = True, False
def select_device(device='', batch_size=None):
# device = 'cpu' or '0' or '0,1,2,3'
cpu_request = device.lower() == 'cpu'
if device and not cpu_request: # if device requested other than 'cpu'
s = f'Using torch {torch.__version__} ' # string
cpu = device.lower() == 'cpu'
if cpu:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
elif device: # non-cpu device requested
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availablity
assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
cuda = False if cpu_request else torch.cuda.is_available()
cuda = torch.cuda.is_available() and not cpu
if cuda:
c = 1024 ** 2 # bytes to MB
ng = torch.cuda.device_count()
if ng > 1 and batch_size: # check that batch_size is compatible with device_count
assert batch_size % ng == 0, f'batch-size {batch_size} not multiple of GPU count {ng}'
x = [torch.cuda.get_device_properties(i) for i in range(ng)]
s = f'Using torch {torch.__version__} '
for i, d in enumerate((device or '0').split(',')):
if i == 1:
s = ' ' * len(s)
logger.info(f"{s}CUDA:{d} ({x[i].name}, {x[i].total_memory / c}MB)")
n = torch.cuda.device_count()
if n > 1 and batch_size: # check that batch_size is compatible with device_count
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
space = ' ' * len(s)
for i, d in enumerate(device.split(',') if device else range(n)):
p = torch.cuda.get_device_properties(i)
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
else:
logger.info(f'Using torch {torch.__version__} CPU')
s += 'CPU'
logger.info('') # skip a line
logger.info(f'{s}\n') # skip a line
return torch.device('cuda:0' if cuda else 'cpu')
def time_synchronized():
# pytorch-accurate time
torch.cuda.synchronize() if torch.cuda.is_available() else None
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()