EMA and non_blocking=True
parent
2377e5f6ee
commit
a1c8406af3
2
test.py
2
test.py
|
@ -69,7 +69,7 @@ def test(data,
|
|||
loss = torch.zeros(3, device=device)
|
||||
jdict, stats, ap, ap_class = [], [], [], []
|
||||
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
|
||||
img = img.to(device)
|
||||
img = img.to(device, non_blocking=True)
|
||||
img = img.half() if half else img.float() # uint8 to fp16/32
|
||||
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
||||
targets = targets.to(device)
|
||||
|
|
4
train.py
4
train.py
|
@ -193,7 +193,7 @@ def train(hyp):
|
|||
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
|
||||
|
||||
# Exponential moving average
|
||||
ema = torch_utils.ModelEMA(model, updates=start_epoch * nb / accumulate)
|
||||
ema = torch_utils.ModelEMA(model)
|
||||
|
||||
# Start training
|
||||
t0 = time.time()
|
||||
|
@ -223,7 +223,7 @@ def train(hyp):
|
|||
pbar = tqdm(enumerate(dataloader), total=nb) # progress bar
|
||||
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
||||
ni = i + nb * epoch # number integrated batches (since train start)
|
||||
imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
|
||||
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
|
||||
|
||||
# Warmup
|
||||
if ni <= nw:
|
||||
|
|
Loading…
Reference in New Issue