refractored the code
parent
5cdad8922c
commit
a63bfd38c1
|
@ -27,9 +27,16 @@ import torch.distributed as dist
|
|||
import torch.hub as hub
|
||||
import torch.optim.lr_scheduler as lr_scheduler
|
||||
import torchvision
|
||||
from torch.cuda import amp
|
||||
from tqdm import tqdm
|
||||
|
||||
# version check
|
||||
if torch.__version__.startswith("1.8"):
|
||||
Autocast = torch.cuda.amp.autocast
|
||||
GradScaler = torch.cuda.amp.GradScaler
|
||||
else:
|
||||
Autocast = torch.amp.autocast
|
||||
GradScaler = torch.amp.GradScaler
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[1] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
|
@ -198,7 +205,7 @@ def train(opt, device):
|
|||
t0 = time.time()
|
||||
criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing) # loss function
|
||||
best_fitness = 0.0
|
||||
scaler = amp.GradScaler(enabled=cuda)
|
||||
scaler = GradScaler(enabled=cuda)
|
||||
val = test_dir.stem # 'val' or 'test'
|
||||
LOGGER.info(
|
||||
f"Image sizes {imgsz} train, {imgsz} test\n"
|
||||
|
@ -219,7 +226,7 @@ def train(opt, device):
|
|||
images, labels = images.to(device, non_blocking=True), labels.to(device)
|
||||
|
||||
# Forward
|
||||
with amp.autocast(enabled=cuda): # stability issues when enabled
|
||||
with Autocast(enabled=device.type != "cpu"): # stability issues when enabled
|
||||
loss = criterion(model(images), labels)
|
||||
|
||||
# Backward
|
||||
|
|
|
@ -48,6 +48,11 @@ from utils.general import (
|
|||
)
|
||||
from utils.torch_utils import select_device, smart_inference_mode
|
||||
|
||||
#version check
|
||||
if torch.__version__.startswith("1.8"):
|
||||
Autocast = torch.cuda.amp.autocast
|
||||
else:
|
||||
Autocast = torch.amp.autocast
|
||||
|
||||
@smart_inference_mode()
|
||||
def run(
|
||||
|
@ -108,7 +113,7 @@ def run(
|
|||
action = "validating" if dataloader.dataset.root.stem == "val" else "testing"
|
||||
desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
|
||||
bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
|
||||
with torch.cuda.amp.autocast(enabled=device.type != "cpu"):
|
||||
with Autocast(enabled=device.type != "cpu"):
|
||||
for images, labels in bar:
|
||||
with dt[0]:
|
||||
images, labels = images.to(device, non_blocking=True), labels.to(device)
|
||||
|
|
|
@ -20,7 +20,6 @@ import requests
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
from PIL import Image
|
||||
from torch.cuda import amp
|
||||
|
||||
# Import 'ultralytics' package or install if missing
|
||||
try:
|
||||
|
@ -56,6 +55,11 @@ from utils.general import (
|
|||
)
|
||||
from utils.torch_utils import copy_attr, smart_inference_mode
|
||||
|
||||
# version check
|
||||
if torch.__version__.startswith("1.8"):
|
||||
Autocast = torch.cuda.amp.autocast
|
||||
else:
|
||||
Autocast = torch.amp.autocast
|
||||
|
||||
def autopad(k, p=None, d=1):
|
||||
"""
|
||||
|
@ -864,7 +868,7 @@ class AutoShape(nn.Module):
|
|||
p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
|
||||
autocast = self.amp and (p.device.type != "cpu") # Automatic Mixed Precision (AMP) inference
|
||||
if isinstance(ims, torch.Tensor): # torch
|
||||
with amp.autocast(autocast):
|
||||
with Autocast(enabled=autocast):
|
||||
return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
|
||||
|
||||
# Pre-process
|
||||
|
@ -891,7 +895,7 @@ class AutoShape(nn.Module):
|
|||
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
|
||||
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
|
||||
|
||||
with amp.autocast(autocast):
|
||||
with Autocast(enabled=autocast):
|
||||
# Inference
|
||||
with dt[1]:
|
||||
y = self.model(x, augment=augment) # forward
|
||||
|
|
|
@ -89,6 +89,14 @@ from utils.torch_utils import (
|
|||
torch_distributed_zero_first,
|
||||
)
|
||||
|
||||
# version check
|
||||
if torch.__version__.startswith("1.8"):
|
||||
Autocast = torch.cuda.amp.autocast
|
||||
GradScaler = torch.cuda.amp.GradScaler
|
||||
else:
|
||||
Autocast = torch.amp.autocast
|
||||
GradScaler = torch.amp.GradScaler
|
||||
|
||||
LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
||||
RANK = int(os.getenv("RANK", -1))
|
||||
WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
|
||||
|
@ -320,7 +328,7 @@ def train(hyp, opt, device, callbacks):
|
|||
maps = np.zeros(nc) # mAP per class
|
||||
results = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||||
scheduler.last_epoch = start_epoch - 1 # do not move
|
||||
scaler = torch.cuda.amp.GradScaler(enabled=amp)
|
||||
scaler = GradScaler(enabled=amp)
|
||||
stopper, stop = EarlyStopping(patience=opt.patience), False
|
||||
compute_loss = ComputeLoss(model, overlap=overlap) # init loss class
|
||||
# callbacks.run('on_train_start')
|
||||
|
@ -380,7 +388,7 @@ def train(hyp, opt, device, callbacks):
|
|||
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
|
||||
|
||||
# Forward
|
||||
with torch.cuda.amp.autocast(amp):
|
||||
with Autocast(enabled=amp):
|
||||
pred = model(imgs) # forward
|
||||
loss, loss_items = compute_loss(pred, targets.to(device), masks=masks.to(device).float())
|
||||
if RANK != -1:
|
||||
|
|
12
train.py
12
train.py
|
@ -94,6 +94,14 @@ from utils.torch_utils import (
|
|||
torch_distributed_zero_first,
|
||||
)
|
||||
|
||||
# version check
|
||||
if torch.__version__.startswith("1.8"):
|
||||
Autocast = torch.cuda.amp.autocast
|
||||
GradScaler = torch.cuda.amp.GradScaler
|
||||
else:
|
||||
Autocast = torch.amp.autocast
|
||||
GradScaler = torch.amp.GradScaler
|
||||
|
||||
LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
||||
RANK = int(os.getenv("RANK", -1))
|
||||
WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
|
||||
|
@ -352,7 +360,7 @@ def train(hyp, opt, device, callbacks):
|
|||
maps = np.zeros(nc) # mAP per class
|
||||
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||||
scheduler.last_epoch = start_epoch - 1 # do not move
|
||||
scaler = torch.cuda.amp.GradScaler(enabled=amp)
|
||||
scaler = GradScaler(enabled=amp)
|
||||
stopper, stop = EarlyStopping(patience=opt.patience), False
|
||||
compute_loss = ComputeLoss(model) # init loss class
|
||||
callbacks.run("on_train_start")
|
||||
|
@ -409,7 +417,7 @@ def train(hyp, opt, device, callbacks):
|
|||
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
|
||||
|
||||
# Forward
|
||||
with torch.cuda.amp.autocast(amp):
|
||||
with Autocast(enabled=amp):
|
||||
pred = model(imgs) # forward
|
||||
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
|
||||
if RANK != -1:
|
||||
|
|
|
@ -12,7 +12,7 @@ from utils.torch_utils import profile
|
|||
|
||||
def check_train_batch_size(model, imgsz=640, amp=True):
|
||||
"""Checks and computes optimal training batch size for YOLOv5 model, given image size and AMP setting."""
|
||||
with torch.cuda.amp.autocast(amp):
|
||||
with torch.amp.autocast("cuda", enabled=amp):
|
||||
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue