mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
update torch.cuda.amp to torch.amp
This commit is contained in:
parent
6096750fcc
commit
aa637bb6f0
@ -108,7 +108,7 @@ def run(
|
||||
action = "validating" if dataloader.dataset.root.stem == "val" else "testing"
|
||||
desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
|
||||
bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
|
||||
with torch.cuda.amp.autocast(enabled=device.type != "cpu"):
|
||||
with torch.amp.autocast("cuda", enabled=device.type != "cpu"):
|
||||
for images, labels in bar:
|
||||
with dt[0]:
|
||||
images, labels = images.to(device, non_blocking=True), labels.to(device)
|
||||
|
@ -320,7 +320,7 @@ def train(hyp, opt, device, callbacks):
|
||||
maps = np.zeros(nc) # mAP per class
|
||||
results = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||||
scheduler.last_epoch = start_epoch - 1 # do not move
|
||||
scaler = torch.cuda.amp.GradScaler(enabled=amp)
|
||||
scaler = torch.amp.GradScaler("cuda", enabled=amp)
|
||||
stopper, stop = EarlyStopping(patience=opt.patience), False
|
||||
compute_loss = ComputeLoss(model, overlap=overlap) # init loss class
|
||||
# callbacks.run('on_train_start')
|
||||
@ -380,7 +380,7 @@ def train(hyp, opt, device, callbacks):
|
||||
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
|
||||
|
||||
# Forward
|
||||
with torch.cuda.amp.autocast(amp):
|
||||
with torch.amp.autocast("cuda", enabled=amp):
|
||||
pred = model(imgs) # forward
|
||||
loss, loss_items = compute_loss(pred, targets.to(device), masks=masks.to(device).float())
|
||||
if RANK != -1:
|
||||
|
4
train.py
4
train.py
@ -352,7 +352,7 @@ def train(hyp, opt, device, callbacks):
|
||||
maps = np.zeros(nc) # mAP per class
|
||||
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||||
scheduler.last_epoch = start_epoch - 1 # do not move
|
||||
scaler = torch.cuda.amp.GradScaler(enabled=amp)
|
||||
scaler = torch.amp.GradScaler("cuda", enabled=amp)
|
||||
stopper, stop = EarlyStopping(patience=opt.patience), False
|
||||
compute_loss = ComputeLoss(model) # init loss class
|
||||
callbacks.run("on_train_start")
|
||||
@ -409,7 +409,7 @@ def train(hyp, opt, device, callbacks):
|
||||
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
|
||||
|
||||
# Forward
|
||||
with torch.cuda.amp.autocast(amp):
|
||||
with torch.amp.autocast("cuda", enabled=amp):
|
||||
pred = model(imgs) # forward
|
||||
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
|
||||
if RANK != -1:
|
||||
|
@ -12,7 +12,7 @@ from utils.torch_utils import profile
|
||||
|
||||
def check_train_batch_size(model, imgsz=640, amp=True):
|
||||
"""Checks and computes optimal training batch size for YOLOv5 model, given image size and AMP setting."""
|
||||
with torch.cuda.amp.autocast(amp):
|
||||
with torch.amp.autocast("cuda", enabled=amp):
|
||||
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user