mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
TensorBoard DP/DDP graph fix (#3325)
This commit is contained in:
parent
407dc5008e
commit
aad99b63d6
6
train.py
6
train.py
@ -32,7 +32,7 @@ from utils.general import labels_to_class_weights, increment_path, labels_to_ima
|
|||||||
from utils.google_utils import attempt_download
|
from utils.google_utils import attempt_download
|
||||||
from utils.loss import ComputeLoss
|
from utils.loss import ComputeLoss
|
||||||
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
|
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
|
||||||
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel
|
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
|
||||||
from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
|
from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
@ -331,7 +331,7 @@ def train(hyp, opt, device, tb_writer=None):
|
|||||||
f = save_dir / f'train_batch{ni}.jpg' # filename
|
f = save_dir / f'train_batch{ni}.jpg' # filename
|
||||||
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
|
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
|
||||||
if tb_writer:
|
if tb_writer:
|
||||||
tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), []) # add model graph
|
tb_writer.add_graph(torch.jit.trace(de_parallel(model), imgs, strict=False), []) # model graph
|
||||||
# tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
|
# tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
|
||||||
elif plots and ni == 10 and wandb_logger.wandb:
|
elif plots and ni == 10 and wandb_logger.wandb:
|
||||||
wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
|
wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
|
||||||
@ -390,7 +390,7 @@ def train(hyp, opt, device, tb_writer=None):
|
|||||||
ckpt = {'epoch': epoch,
|
ckpt = {'epoch': epoch,
|
||||||
'best_fitness': best_fitness,
|
'best_fitness': best_fitness,
|
||||||
'training_results': results_file.read_text(),
|
'training_results': results_file.read_text(),
|
||||||
'model': deepcopy(model.module if is_parallel(model) else model).half(),
|
'model': deepcopy(de_parallel(model)).half(),
|
||||||
'ema': deepcopy(ema.ema).half(),
|
'ema': deepcopy(ema.ema).half(),
|
||||||
'updates': ema.updates,
|
'updates': ema.updates,
|
||||||
'optimizer': optimizer.state_dict(),
|
'optimizer': optimizer.state_dict(),
|
||||||
|
@ -134,9 +134,15 @@ def profile(x, ops, n=100, device=None):
|
|||||||
|
|
||||||
|
|
||||||
def is_parallel(model):
|
def is_parallel(model):
|
||||||
|
# Returns True if model is of type DP or DDP
|
||||||
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
||||||
|
|
||||||
|
|
||||||
|
def de_parallel(model):
|
||||||
|
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP
|
||||||
|
return model.module if is_parallel(model) else model
|
||||||
|
|
||||||
|
|
||||||
def intersect_dicts(da, db, exclude=()):
|
def intersect_dicts(da, db, exclude=()):
|
||||||
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
||||||
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
|
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user