diff --git a/tutorial.ipynb b/tutorial.ipynb index a70887e97..1c5d77813 100644 --- a/tutorial.ipynb +++ b/tutorial.ipynb @@ -439,7 +439,7 @@ "id": "4JnkELT0cIJg" }, "source": [ - "# 1. Inference\n", + "# 1. Detect\n", "\n", "`detect.py` runs YOLOv5 inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/detect`. Example inference sources are:\n", "\n", @@ -506,17 +506,7 @@ }, "source": [ "# 2. Validate\n", - "Validate a model's accuracy on [COCO](https://cocodataset.org/#home) val or test-dev datasets. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag. Note that `pycocotools` metrics may be ~1% better than the equivalent repo metrics, as is visible below, due to slight differences in mAP computation." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "eyTZYGgRjnMc" - }, - "source": [ - "## COCO val\n", - "Download [COCO val 2017](https://github.com/ultralytics/yolov5/blob/74b34872fdf41941cddcf243951cdb090fbac17b/data/coco.yaml#L14) dataset (1GB - 5000 images), and test model accuracy." + "Validate a model's accuracy on the [COCO](https://cocodataset.org/#home) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag." ] }, { @@ -544,8 +534,8 @@ }, "source": [ "# Download COCO val\n", - "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip')\n", - "!unzip -q tmp.zip -d ../datasets && rm tmp.zip" + "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip') # download COCO val (1GB - 5000 images)\n", + "!unzip -q tmp.zip -d ../datasets && rm tmp.zip # unzip" ], "execution_count": null, "outputs": [ @@ -575,7 +565,7 @@ "outputId": "19a590ef-363e-424c-d9ce-78bbe0593cd5" }, "source": [ - "# Run YOLOv5x on COCO val\n", + "# Validate YOLOv5x on COCO val\n", "!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half" ], "execution_count": null, @@ -631,40 +621,6 @@ } ] }, - { - "cell_type": "markdown", - "metadata": { - "id": "rc_KbFk0juX2" - }, - "source": [ - "## COCO test\n", - "Download [COCO test2017](https://github.com/ultralytics/yolov5/blob/74b34872fdf41941cddcf243951cdb090fbac17b/data/coco.yaml#L15) dataset (7GB - 40,000 images), to test model accuracy on test-dev set (**20,000 images, no labels**). Results are saved to a `*.json` file which should be **zipped** and submitted to the evaluation server at https://competitions.codalab.org/competitions/20794." - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "V0AJnSeCIHyJ" - }, - "source": [ - "# Download COCO test-dev2017\n", - "!bash data/scripts/get_coco.sh --test" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "29GJXAP_lPrt" - }, - "source": [ - "# Run YOLOv5x on COCO test\n", - "!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half --task test" - ], - "execution_count": null, - "outputs": [] - }, { "cell_type": "markdown", "metadata": { @@ -1136,6 +1092,19 @@ "execution_count": null, "outputs": [] }, + { + "cell_type": "code", + "source": [ + "# Validate on COCO test. Zip results.json and submit to eval server at https://competitions.codalab.org/competitions/20794\n", + "!bash data/scripts/get_coco.sh --test # download COCO test-dev2017 (7GB - 40,000 images, test 20,000)\n", + "!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half --task test" + ], + "metadata": { + "id": "aq4DPWGu0Bl1" + }, + "execution_count": null, + "outputs": [] + }, { "cell_type": "code", "metadata": {