Fix ONNX export using --grid --simplify --dynamic simultaneously (#2982)
* Update yolo.py * Update export.py * fix export grid * Update export.py, remove detect export attribute * rearrange if order * remove --grid, default inplace=False * rename exp_dynamic to onnx_dynamic, comment * replace bs with 1 in anchor_grid[i] index 0 * Update export.py Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>pull/3030/head
parent
41cc7caee6
commit
b292837e36
|
@ -26,9 +26,9 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
|
||||
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
|
||||
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
||||
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
|
||||
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
||||
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
|
||||
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') # ONNX-only
|
||||
parser.add_argument('--simplify', action='store_true', help='simplify ONNX model') # ONNX-only
|
||||
opt = parser.parse_args()
|
||||
|
@ -60,9 +60,11 @@ if __name__ == '__main__':
|
|||
m.act = Hardswish()
|
||||
elif isinstance(m.act, nn.SiLU):
|
||||
m.act = SiLU()
|
||||
# elif isinstance(m, models.yolo.Detect):
|
||||
# m.forward = m.forward_export # assign forward (optional)
|
||||
model.model[-1].export = not opt.grid # set Detect() layer grid export
|
||||
elif isinstance(m, models.yolo.Detect):
|
||||
m.inplace = opt.inplace
|
||||
m.onnx_dynamic = opt.dynamic
|
||||
# m.forward = m.forward_export # assign forward (optional)
|
||||
|
||||
for _ in range(2):
|
||||
y = model(img) # dry runs
|
||||
print(f"\n{colorstr('PyTorch:')} starting from {opt.weights} ({file_size(opt.weights):.1f} MB)")
|
||||
|
|
|
@ -24,7 +24,7 @@ except ImportError:
|
|||
|
||||
class Detect(nn.Module):
|
||||
stride = None # strides computed during build
|
||||
export = False # onnx export
|
||||
onnx_dynamic = False # ONNX export parameter
|
||||
|
||||
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
|
||||
super(Detect, self).__init__()
|
||||
|
@ -42,14 +42,13 @@ class Detect(nn.Module):
|
|||
def forward(self, x):
|
||||
# x = x.copy() # for profiling
|
||||
z = [] # inference output
|
||||
self.training |= self.export
|
||||
for i in range(self.nl):
|
||||
x[i] = self.m[i](x[i]) # conv
|
||||
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
||||
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
||||
|
||||
if not self.training: # inference
|
||||
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
||||
if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
|
||||
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
||||
|
||||
y = x[i].sigmoid()
|
||||
|
@ -58,7 +57,7 @@ class Detect(nn.Module):
|
|||
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
||||
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
|
||||
xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
||||
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
||||
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2) # wh
|
||||
y = torch.cat((xy, wh, y[..., 4:]), -1)
|
||||
z.append(y.view(bs, -1, self.no))
|
||||
|
||||
|
|
Loading…
Reference in New Issue