parent
7b31a531b4
commit
b5b56a3c88
|
@ -17,7 +17,7 @@ Usage - formats:
|
|||
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
||||
yolov5s.xml # OpenVINO
|
||||
yolov5s.engine # TensorRT
|
||||
yolov5s.mlmodel # CoreML (under development)
|
||||
yolov5s.mlmodel # CoreML (MacOS-only)
|
||||
yolov5s_saved_model # TensorFlow SavedModel
|
||||
yolov5s.pb # TensorFlow GraphDef
|
||||
yolov5s.tflite # TensorFlow Lite
|
||||
|
|
|
@ -25,7 +25,7 @@ Inference:
|
|||
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
||||
yolov5s.xml # OpenVINO
|
||||
yolov5s.engine # TensorRT
|
||||
yolov5s.mlmodel # CoreML (under development)
|
||||
yolov5s.mlmodel # CoreML (MacOS-only)
|
||||
yolov5s_saved_model # TensorFlow SavedModel
|
||||
yolov5s.pb # TensorFlow GraphDef
|
||||
yolov5s.tflite # TensorFlow Lite
|
||||
|
@ -156,7 +156,6 @@ def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
|
|||
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
||||
f = file.with_suffix('.mlmodel')
|
||||
|
||||
model.train() # CoreML exports should be placed in model.train() mode
|
||||
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
|
||||
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
||||
ct_model.save(f)
|
||||
|
|
|
@ -420,9 +420,12 @@ class DetectMultiBackend(nn.Module):
|
|||
im = Image.fromarray((im[0] * 255).astype('uint8'))
|
||||
# im = im.resize((192, 320), Image.ANTIALIAS)
|
||||
y = self.model.predict({'image': im}) # coordinates are xywh normalized
|
||||
box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
|
||||
conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
|
||||
y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
|
||||
if 'confidence' in y:
|
||||
box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
|
||||
conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
|
||||
y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
|
||||
else:
|
||||
y = y[list(y)[-1]] # last output
|
||||
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
||||
im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
|
||||
if self.saved_model: # SavedModel
|
||||
|
|
2
val.py
2
val.py
|
@ -11,7 +11,7 @@ Usage - formats:
|
|||
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
||||
yolov5s.xml # OpenVINO
|
||||
yolov5s.engine # TensorRT
|
||||
yolov5s.mlmodel # CoreML (under development)
|
||||
yolov5s.mlmodel # CoreML (MacOS-only)
|
||||
yolov5s_saved_model # TensorFlow SavedModel
|
||||
yolov5s.pb # TensorFlow GraphDef
|
||||
yolov5s.tflite # TensorFlow Lite
|
||||
|
|
Loading…
Reference in New Issue