* added imagenet small versions 10,100 and 1000 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>pull/10752/head^2
parent
c0b0729386
commit
b61143c7e5
|
@ -0,0 +1,32 @@
|
|||
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
|
||||
# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
|
||||
# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
|
||||
# Example usage: python classify/train.py --data imagenet
|
||||
# parent
|
||||
# ├── yolov5
|
||||
# └── datasets
|
||||
# └── imagenet10 ← downloads here
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/imagenet10 # dataset root dir
|
||||
train: train # train images (relative to 'path') 1281167 images
|
||||
val: val # val images (relative to 'path') 50000 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: tench
|
||||
1: goldfish
|
||||
2: great white shark
|
||||
3: tiger shark
|
||||
4: hammerhead shark
|
||||
5: electric ray
|
||||
6: stingray
|
||||
7: cock
|
||||
8: hen
|
||||
9: ostrich
|
||||
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: data/scripts/get_imagenet10.sh
|
|
@ -0,0 +1,120 @@
|
|||
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
|
||||
# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
|
||||
# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
|
||||
# Example usage: python classify/train.py --data imagenet
|
||||
# parent
|
||||
# ├── yolov5
|
||||
# └── datasets
|
||||
# └── imagenet100 ← downloads here
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/imagenet100 # dataset root dir
|
||||
train: train # train images (relative to 'path') 1281167 images
|
||||
val: val # val images (relative to 'path') 50000 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: tench
|
||||
1: goldfish
|
||||
2: great white shark
|
||||
3: tiger shark
|
||||
4: hammerhead shark
|
||||
5: electric ray
|
||||
6: stingray
|
||||
7: cock
|
||||
8: hen
|
||||
9: ostrich
|
||||
10: brambling
|
||||
11: goldfinch
|
||||
12: house finch
|
||||
13: junco
|
||||
14: indigo bunting
|
||||
15: American robin
|
||||
16: bulbul
|
||||
17: jay
|
||||
18: magpie
|
||||
19: chickadee
|
||||
20: American dipper
|
||||
21: kite
|
||||
22: bald eagle
|
||||
23: vulture
|
||||
24: great grey owl
|
||||
25: fire salamander
|
||||
26: smooth newt
|
||||
27: newt
|
||||
28: spotted salamander
|
||||
29: axolotl
|
||||
30: American bullfrog
|
||||
31: tree frog
|
||||
32: tailed frog
|
||||
33: loggerhead sea turtle
|
||||
34: leatherback sea turtle
|
||||
35: mud turtle
|
||||
36: terrapin
|
||||
37: box turtle
|
||||
38: banded gecko
|
||||
39: green iguana
|
||||
40: Carolina anole
|
||||
41: desert grassland whiptail lizard
|
||||
42: agama
|
||||
43: frilled-necked lizard
|
||||
44: alligator lizard
|
||||
45: Gila monster
|
||||
46: European green lizard
|
||||
47: chameleon
|
||||
48: Komodo dragon
|
||||
49: Nile crocodile
|
||||
50: American alligator
|
||||
51: triceratops
|
||||
52: worm snake
|
||||
53: ring-necked snake
|
||||
54: eastern hog-nosed snake
|
||||
55: smooth green snake
|
||||
56: kingsnake
|
||||
57: garter snake
|
||||
58: water snake
|
||||
59: vine snake
|
||||
60: night snake
|
||||
61: boa constrictor
|
||||
62: African rock python
|
||||
63: Indian cobra
|
||||
64: green mamba
|
||||
65: sea snake
|
||||
66: Saharan horned viper
|
||||
67: eastern diamondback rattlesnake
|
||||
68: sidewinder
|
||||
69: trilobite
|
||||
70: harvestman
|
||||
71: scorpion
|
||||
72: yellow garden spider
|
||||
73: barn spider
|
||||
74: European garden spider
|
||||
75: southern black widow
|
||||
76: tarantula
|
||||
77: wolf spider
|
||||
78: tick
|
||||
79: centipede
|
||||
80: black grouse
|
||||
81: ptarmigan
|
||||
82: ruffed grouse
|
||||
83: prairie grouse
|
||||
84: peacock
|
||||
85: quail
|
||||
86: partridge
|
||||
87: grey parrot
|
||||
88: macaw
|
||||
89: sulphur-crested cockatoo
|
||||
90: lorikeet
|
||||
91: coucal
|
||||
92: bee eater
|
||||
93: hornbill
|
||||
94: hummingbird
|
||||
95: jacamar
|
||||
96: toucan
|
||||
97: duck
|
||||
98: red-breasted merganser
|
||||
99: goose
|
||||
# Download script/URL (optional)
|
||||
download: data/scripts/get_imagenet100.sh
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,29 @@
|
|||
#!/bin/bash
|
||||
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
|
||||
# Download ILSVRC2012 ImageNet dataset https://image-net.org
|
||||
# Example usage: bash data/scripts/get_imagenet.sh
|
||||
# parent
|
||||
# ├── yolov5
|
||||
# └── datasets
|
||||
# └── imagenet ← downloads here
|
||||
|
||||
# Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
|
||||
if [ "$#" -gt 0 ]; then
|
||||
for opt in "$@"; do
|
||||
case "${opt}" in
|
||||
--train) train=true ;;
|
||||
--val) val=true ;;
|
||||
esac
|
||||
done
|
||||
else
|
||||
train=true
|
||||
val=true
|
||||
fi
|
||||
|
||||
# Make dir
|
||||
d='../datasets/imagenet10' # unzip directory
|
||||
mkdir -p $d && cd $d
|
||||
|
||||
# Download/unzip train
|
||||
wget https://github.com/ultralytics/yolov5/releases/download/v1.0/imagenet10.zip
|
||||
unzip imagenet10.zip && rm imagenet10.zip
|
|
@ -0,0 +1,29 @@
|
|||
#!/bin/bash
|
||||
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
|
||||
# Download ILSVRC2012 ImageNet dataset https://image-net.org
|
||||
# Example usage: bash data/scripts/get_imagenet.sh
|
||||
# parent
|
||||
# ├── yolov5
|
||||
# └── datasets
|
||||
# └── imagenet ← downloads here
|
||||
|
||||
# Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
|
||||
if [ "$#" -gt 0 ]; then
|
||||
for opt in "$@"; do
|
||||
case "${opt}" in
|
||||
--train) train=true ;;
|
||||
--val) val=true ;;
|
||||
esac
|
||||
done
|
||||
else
|
||||
train=true
|
||||
val=true
|
||||
fi
|
||||
|
||||
# Make dir
|
||||
d='../datasets/imagenet100' # unzip directory
|
||||
mkdir -p $d && cd $d
|
||||
|
||||
# Download/unzip train
|
||||
wget https://github.com/ultralytics/yolov5/releases/download/v1.0/imagenet100.zip
|
||||
unzip imagenet100.zip && rm imagenet100.zip
|
|
@ -0,0 +1,29 @@
|
|||
#!/bin/bash
|
||||
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
|
||||
# Download ILSVRC2012 ImageNet dataset https://image-net.org
|
||||
# Example usage: bash data/scripts/get_imagenet.sh
|
||||
# parent
|
||||
# ├── yolov5
|
||||
# └── datasets
|
||||
# └── imagenet ← downloads here
|
||||
|
||||
# Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
|
||||
if [ "$#" -gt 0 ]; then
|
||||
for opt in "$@"; do
|
||||
case "${opt}" in
|
||||
--train) train=true ;;
|
||||
--val) val=true ;;
|
||||
esac
|
||||
done
|
||||
else
|
||||
train=true
|
||||
val=true
|
||||
fi
|
||||
|
||||
# Make dir
|
||||
d='../datasets/imagenet1000' # unzip directory
|
||||
mkdir -p $d && cd $d
|
||||
|
||||
# Download/unzip train
|
||||
wget https://github.com/ultralytics/yolov5/releases/download/v1.0/imagenet1000.zip
|
||||
unzip imagenet1000.zip && rm imagenet1000.zip
|
Loading…
Reference in New Issue