Daemon thread plotting (#1561)
* Daemon thread plotting * remove process_batch * plot after printpull/1566/head
parent
68211f72c9
commit
b6ed1104a6
23
test.py
23
test.py
|
@ -3,6 +3,7 @@ import glob
|
|||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
@ -206,10 +207,10 @@ def test(data,
|
|||
|
||||
# Plot images
|
||||
if plots and batch_i < 3:
|
||||
f = save_dir / f'test_batch{batch_i}_labels.jpg' # filename
|
||||
plot_images(img, targets, paths, f, names) # labels
|
||||
f = save_dir / f'test_batch{batch_i}_pred.jpg'
|
||||
plot_images(img, output_to_target(output), paths, f, names) # predictions
|
||||
f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
|
||||
Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
|
||||
f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
|
||||
Thread(target=plot_images, args=(img, output_to_target(output), paths, f, names), daemon=True).start()
|
||||
|
||||
# Compute statistics
|
||||
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
|
||||
|
@ -221,13 +222,6 @@ def test(data,
|
|||
else:
|
||||
nt = torch.zeros(1)
|
||||
|
||||
# Plots
|
||||
if plots:
|
||||
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
|
||||
if wandb and wandb.run:
|
||||
wandb.log({"Images": wandb_images})
|
||||
wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]})
|
||||
|
||||
# Print results
|
||||
pf = '%20s' + '%12.3g' * 6 # print format
|
||||
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
|
||||
|
@ -242,6 +236,13 @@ def test(data,
|
|||
if not training:
|
||||
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
|
||||
|
||||
# Plots
|
||||
if plots:
|
||||
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
|
||||
if wandb and wandb.run:
|
||||
wandb.log({"Images": wandb_images})
|
||||
wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]})
|
||||
|
||||
# Save JSON
|
||||
if save_json and len(jdict):
|
||||
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
|
||||
|
|
10
train.py
10
train.py
|
@ -1,12 +1,13 @@
|
|||
import argparse
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
from warnings import warn
|
||||
|
||||
import math
|
||||
import numpy as np
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
|
@ -134,6 +135,7 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
|||
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
|
||||
name=save_dir.stem,
|
||||
id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
|
||||
loggers = {'wandb': wandb} # loggers dict
|
||||
|
||||
# Resume
|
||||
start_epoch, best_fitness = 0, 0.0
|
||||
|
@ -201,11 +203,9 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
|||
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
|
||||
# model._initialize_biases(cf.to(device))
|
||||
if plots:
|
||||
plot_labels(labels, save_dir=save_dir)
|
||||
Thread(target=plot_labels, args=(labels, save_dir, loggers), daemon=True).start()
|
||||
if tb_writer:
|
||||
tb_writer.add_histogram('classes', c, 0)
|
||||
if wandb:
|
||||
wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.png')]})
|
||||
|
||||
# Anchors
|
||||
if not opt.noautoanchor:
|
||||
|
@ -311,7 +311,7 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
|||
# Plot
|
||||
if plots and ni < 3:
|
||||
f = save_dir / f'train_batch{ni}.jpg' # filename
|
||||
plot_images(images=imgs, targets=targets, paths=paths, fname=f)
|
||||
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
|
||||
# if tb_writer:
|
||||
# tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
|
||||
# tb_writer.add_graph(model, imgs) # add model to tensorboard
|
||||
|
|
|
@ -250,7 +250,7 @@ def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_tx
|
|||
plt.savefig('test_study.png', dpi=300)
|
||||
|
||||
|
||||
def plot_labels(labels, save_dir=''):
|
||||
def plot_labels(labels, save_dir=Path(''), loggers=None):
|
||||
# plot dataset labels
|
||||
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
|
||||
nc = int(c.max() + 1) # number of classes
|
||||
|
@ -264,7 +264,7 @@ def plot_labels(labels, save_dir=''):
|
|||
sns.pairplot(x, corner=True, diag_kind='hist', kind='scatter', markers='o',
|
||||
plot_kws=dict(s=3, edgecolor=None, linewidth=1, alpha=0.02),
|
||||
diag_kws=dict(bins=50))
|
||||
plt.savefig(Path(save_dir) / 'labels_correlogram.png', dpi=200)
|
||||
plt.savefig(save_dir / 'labels_correlogram.png', dpi=200)
|
||||
plt.close()
|
||||
except Exception as e:
|
||||
pass
|
||||
|
@ -292,9 +292,14 @@ def plot_labels(labels, save_dir=''):
|
|||
for a in [0, 1, 2, 3]:
|
||||
for s in ['top', 'right', 'left', 'bottom']:
|
||||
ax[a].spines[s].set_visible(False)
|
||||
plt.savefig(Path(save_dir) / 'labels.png', dpi=200)
|
||||
plt.savefig(save_dir / 'labels.png', dpi=200)
|
||||
plt.close()
|
||||
|
||||
# loggers
|
||||
for k, v in loggers.items() or {}:
|
||||
if k == 'wandb' and v:
|
||||
v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.png')]})
|
||||
|
||||
|
||||
def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
|
||||
# Plot hyperparameter evolution results in evolve.txt
|
||||
|
|
Loading…
Reference in New Issue