Create `dataset_stats()` for HUB
parent
ac8691e208
commit
b6fdd2e5e5
|
@ -17,12 +17,13 @@ import cv2
|
|||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import yaml
|
||||
from PIL import Image, ExifTags
|
||||
from torch.utils.data import Dataset
|
||||
from tqdm import tqdm
|
||||
|
||||
from utils.general import check_requirements, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, \
|
||||
resample_segments, clean_str
|
||||
from utils.general import check_requirements, check_file, check_dataset, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, \
|
||||
segment2box, segments2boxes, resample_segments, clean_str
|
||||
from utils.torch_utils import torch_distributed_zero_first
|
||||
|
||||
# Parameters
|
||||
|
@ -1083,3 +1084,34 @@ def verify_image_label(params):
|
|||
nc = 1
|
||||
logging.info(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}')
|
||||
return [None] * 4 + [nm, nf, ne, nc]
|
||||
|
||||
|
||||
def dataset_stats(path='data/coco128.yaml', verbose=False):
|
||||
""" Return dataset statistics dictionary with images and instances counts per split per class
|
||||
Usage: from utils.datasets import *; dataset_stats('data/coco128.yaml')
|
||||
Arguments
|
||||
path: Path to data.yaml
|
||||
verbose: Print stats dictionary
|
||||
"""
|
||||
path = check_file(Path(path))
|
||||
with open(path) as f:
|
||||
data = yaml.safe_load(f) # data dict
|
||||
check_dataset(data) # download dataset if missing
|
||||
|
||||
nc = data['nc'] # number of classes
|
||||
stats = {'nc': nc, 'names': data['names']} # statistics dictionary
|
||||
for split in 'train', 'val', 'test':
|
||||
if split not in data:
|
||||
stats[split] = None # i.e. no test set
|
||||
continue
|
||||
x = []
|
||||
dataset = LoadImagesAndLabels(data[split], augment=False, rect=True) # load dataset
|
||||
for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'):
|
||||
x.append(np.bincount(label[:, 0].astype(int), minlength=nc))
|
||||
x = np.array(x) # shape(128x80)
|
||||
stats[split] = {'instances': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()},
|
||||
'images': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
|
||||
'per_class': (x > 0).sum(0).tolist()}}
|
||||
if verbose:
|
||||
print(yaml.dump([stats], sort_keys=False, default_flow_style=False))
|
||||
return stats
|
||||
|
|
Loading…
Reference in New Issue