Update detect.py

class  text 추출
text 추출한걸 음성으로 출력

Signed-off-by: Leedong414 <165615367+Leedong414@users.noreply.github.com>
pull/13048/head
Leedong414 2024-05-29 01:23:31 +09:00 committed by GitHub
parent 5329de2af7
commit ba176b29a3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 80 additions and 95 deletions

175
detect.py
View File

@ -42,34 +42,27 @@ from gtts import gTTS
def detect(opt):
source, weights, conf, save_txt_path = opt.source, opt.weights, opt.conf, opt.save_txt_path
# 모델 로드
model = torch.hub.load("ultralytics/yolov5", "custom", path=weights)
# 이미지 로드 및 추론 수행
results = model(source)
# 결과를 pandas 데이터프레임으로 변환
results_df = results.pandas().xyxy[0]
# 데이터프레임의 클래스 컬럼 추출
classes = results_df["name"].tolist()
# 클래스 정보를 텍스트 파일로 저장
with open(save_txt_path, "w") as f:
for cls in classes:
f.write(f"{cls}\n")
# 콘솔에 출력
print("Detected Classes:")
for cls in classes:
print(cls)
# TTS를 사용하여 클래스 이름들을 음성으로 변환
if classes:
text_to_speak = "Detected classes are: " + ", ".join(classes)
tts = gTTS(text=text_to_speak, lang="en")
tts.save("detected_classes.mp3")
os.system("mpg321 detected_classes.mp3") # mpg321 설치 필요 (리눅스의 경우)
os.system("mpg321 detected_classes.mp3")
if __name__ == "__main__":
@ -79,7 +72,7 @@ if __name__ == "__main__":
)
parser.add_argument(
"--source", type=str, default="/HongRyeon_test01.jpg", help="source"
) # file/folder, 0 for webcam
)
parser.add_argument("--conf", type=float, default=0.5, help="object confidence threshold")
parser.add_argument(
"--save_txt_path", type=str, default="detected_classes.txt", help="path to save detected classes txt file"
@ -91,10 +84,10 @@ if __name__ == "__main__":
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
ROOT = FILE.parents[0]
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
sys.path.append(str(ROOT))
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
from ultralytics.utils.plotting import Annotator, colors, save_one_box
@ -121,56 +114,56 @@ from utils.torch_utils import select_device, smart_inference_mode
@smart_inference_mode()
def run(
weights=ROOT / "yolov5s.pt", # model path or triton URL
source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam)
data=ROOT / "data/coco128.yaml", # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_csv=False, # save results in CSV format
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / "runs/detect", # save results to project/name
name="exp", # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
weights=ROOT / "yolov5s.pt",
source=ROOT / "data/images",
data=ROOT / "data/coco128.yaml",
imgsz=(640, 640),
conf_thres=0.25,
iou_thres=0.45,
max_det=1000,
device="",
view_img=False,
save_txt=False,
save_csv=False,
save_conf=False,
save_crop=False,
nosave=False,
classes=None,
agnostic_nms=False,
augment=False,
visualize=False,
update=False,
project=ROOT / "runs/detect",
name="exp",
exist_ok=False,
line_thickness=3,
hide_labels=False,
hide_conf=False,
half=False,
dnn=False,
vid_stride=1,
):
source = str(source)
save_img = not nosave and not source.endswith(".txt") # save inference images
save_img = not nosave and not source.endswith(".txt")
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
screenshot = source.lower().startswith("screen")
if is_url and is_file:
source = check_file(source) # download
source = check_file(source)
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True)
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
imgsz = check_img_size(imgsz, s=stride)
# Dataloader
bs = 1 # batch_size
bs = 1
if webcam:
view_img = check_imshow(warn=True)
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
@ -181,20 +174,20 @@ def run(
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz))
seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
im = im.half() if model.fp16 else im.float()
im /= 255
if len(im.shape) == 3:
im = im[None] # expand for batch dim
im = im[None]
if model.xml and im.shape[0] > 1:
ims = torch.chunk(im, im.shape[0], 0)
# Inference
with dt[1]:
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
if model.xml and im.shape[0] > 1:
@ -207,17 +200,13 @@ def run(
pred = [pred, None]
else:
pred = model(im, augment=augment, visualize=visualize)
# NMS
with dt[2]:
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
# Define the path for the CSV file
csv_path = save_dir / "predictions.csv"
# Create or append to the CSV file
def write_to_csv(image_name, prediction, confidence):
"""Writes prediction data for an image to a CSV file, appending if the file exists."""
data = {"Image Name": image_name, "Prediction": prediction, "Confidence": confidence}
@ -227,34 +216,33 @@ def run(
writer.writeheader()
writer.writerow(data)
# Process predictions
for i, det in enumerate(pred): # per image
for i, det in enumerate(pred):
seen += 1
if webcam: # batch_size >= 1
if webcam:
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f"{i}: "
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt
s += "%gx%g " % im.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
p = Path(p)
save_path = str(save_dir / p.name)
txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}")
s += "%gx%g " % im.shape[2:]
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]
imc = im0.copy() if save_crop else im0
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
n = (det[:, 5] == c).sum()
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "
# Write results
for *xyxy, conf, cls in reversed(det):
c = int(cls) # integer class
c = int(cls)
label = names[c] if hide_conf else f"{names[c]}"
confidence = float(conf)
confidence_str = f"{confidence:.2f}"
@ -262,59 +250,56 @@ def run(
if save_csv:
write_to_csv(p.name, label, confidence_str)
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
if save_txt:
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
line = (cls, *xywh, conf) if save_conf else (cls, *xywh)
with open(f"{txt_path}.txt", "a") as f:
f.write(("%g " * len(line)).rstrip() % line + "\n")
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
if save_img or save_crop or view_img:
c = int(cls)
label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}")
annotator.box_label(xyxy, label, color=colors(c, True))
if save_crop:
save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)
# Stream results
im0 = annotator.result()
if view_img:
if platform.system() == "Linux" and p not in windows:
windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
cv2.waitKey(1)
# Save results (image with detections)
if save_img:
if dataset.mode == "image":
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
else:
if vid_path[i] != save_path:
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
vid_writer[i].release()
if vid_cap:
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
else:
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos
save_path = str(Path(save_path).with_suffix(".mp4"))
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
vid_writer[i].write(im0)
# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
# Print results
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
t = tuple(x.t / seen * 1e3 for x in dt)
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
strip_optimizer(weights[0])
def parse_opt():
@ -349,7 +334,7 @@ def parse_opt():
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1
print_args(vars(opt))
return opt