Close `matplotlib` plots after opening (#4612)
* Close plots * Replace fig.close() for plt.close()pull/4618/head
parent
11e7c7b48d
commit
bb5ebc290e
|
@ -178,6 +178,7 @@ class ConfusionMatrix:
|
|||
fig.axes[0].set_xlabel('True')
|
||||
fig.axes[0].set_ylabel('Predicted')
|
||||
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
|
||||
plt.close()
|
||||
except Exception as e:
|
||||
print(f'WARNING: ConfusionMatrix plot failure: {e}')
|
||||
|
||||
|
@ -308,6 +309,7 @@ def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
|
|||
ax.set_ylim(0, 1)
|
||||
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
||||
fig.savefig(Path(save_dir), dpi=250)
|
||||
plt.close()
|
||||
|
||||
|
||||
def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
|
||||
|
@ -328,3 +330,4 @@ def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence'
|
|||
ax.set_ylim(0, 1)
|
||||
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
||||
fig.savefig(Path(save_dir), dpi=250)
|
||||
plt.close()
|
||||
|
|
|
@ -345,7 +345,6 @@ def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
|
|||
a.remove()
|
||||
except Exception as e:
|
||||
print('Warning: Plotting error for %s; %s' % (f, e))
|
||||
|
||||
ax[1].legend()
|
||||
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
|
||||
|
||||
|
@ -371,6 +370,7 @@ def plot_evolve(evolve_csv=Path('path/to/evolve.csv')): # from utils.plots impo
|
|||
print('%15s: %.3g' % (k, mu))
|
||||
f = evolve_csv.with_suffix('.png') # filename
|
||||
plt.savefig(f, dpi=200)
|
||||
plt.close()
|
||||
print(f'Saved {f}')
|
||||
|
||||
|
||||
|
@ -397,6 +397,7 @@ def plot_results(file='path/to/results.csv', dir=''):
|
|||
print(f'Warning: Plotting error for {f}: {e}')
|
||||
ax[1].legend()
|
||||
fig.savefig(save_dir / 'results.png', dpi=200)
|
||||
plt.close()
|
||||
|
||||
|
||||
def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
|
||||
|
@ -423,3 +424,4 @@ def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detec
|
|||
|
||||
print(f'Saving {save_dir / f}... ({n}/{channels})')
|
||||
plt.savefig(save_dir / f, dpi=300, bbox_inches='tight')
|
||||
plt.close()
|
||||
|
|
Loading…
Reference in New Issue