YOLOv5 Segmentation Dataloader Updates (#2188)
* Update C3 module * Update C3 module * Update C3 module * Update C3 module * update * update * update * update * update * update * update * update * update * updates * updates * updates * updates * updates * updates * updates * updates * updates * updates * update * update * update * update * updates * updates * updates * updates * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update datasets * update * update * update * update attempt_downlaod() * merge * merge * update * update * update * update * update * update * update * update * update * update * parameterize eps * comments * gs-multiple * update * max_nms implemented * Create one_cycle() function * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * GitHub API rate limit fix * update * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * astuple * epochs * update * update * ComputeLoss() * update * update * update * update * update * update * update * update * update * update * update * merge * merge * merge * merge * update * update * update * update * commit=tag == tags[-1] * Update cudnn.benchmark * update * update * update * updates * updates * updates * updates * updates * updates * updates * update * update * update * update * update * mosaic9 * update * update * update * update * update * update * institute cache versioning * only display on existing cache * reverse cache exists booleanspull/2219/head
parent
404749a33c
commit
bdd88e1ed7
data/scripts
|
@ -10,7 +10,7 @@
|
|||
# Download/unzip labels
|
||||
d='../' # unzip directory
|
||||
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
|
||||
f='coco2017labels.zip' # 68 MB
|
||||
f='coco2017labels.zip' # or 'coco2017labels-segments.zip', 68 MB
|
||||
echo 'Downloading' $url$f ' ...'
|
||||
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
|
||||
|
||||
|
|
|
@ -20,7 +20,8 @@ from PIL import Image, ExifTags
|
|||
from torch.utils.data import Dataset
|
||||
from tqdm import tqdm
|
||||
|
||||
from utils.general import xyxy2xywh, xywh2xyxy, xywhn2xyxy, clean_str
|
||||
from utils.general import xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, resample_segments, \
|
||||
clean_str
|
||||
from utils.torch_utils import torch_distributed_zero_first
|
||||
|
||||
# Parameters
|
||||
|
@ -374,21 +375,23 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||
self.label_files = img2label_paths(self.img_files) # labels
|
||||
cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') # cached labels
|
||||
if cache_path.is_file():
|
||||
cache = torch.load(cache_path) # load
|
||||
if cache['hash'] != get_hash(self.label_files + self.img_files) or 'results' not in cache: # changed
|
||||
cache = self.cache_labels(cache_path, prefix) # re-cache
|
||||
cache, exists = torch.load(cache_path), True # load
|
||||
if cache['hash'] != get_hash(self.label_files + self.img_files) or 'version' not in cache: # changed
|
||||
cache, exists = self.cache_labels(cache_path, prefix), False # re-cache
|
||||
else:
|
||||
cache = self.cache_labels(cache_path, prefix) # cache
|
||||
cache, exists = self.cache_labels(cache_path, prefix), False # cache
|
||||
|
||||
# Display cache
|
||||
[nf, nm, ne, nc, n] = cache.pop('results') # found, missing, empty, corrupted, total
|
||||
desc = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
|
||||
tqdm(None, desc=prefix + desc, total=n, initial=n)
|
||||
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total
|
||||
if exists:
|
||||
d = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
|
||||
tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results
|
||||
assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}'
|
||||
|
||||
# Read cache
|
||||
cache.pop('hash') # remove hash
|
||||
labels, shapes = zip(*cache.values())
|
||||
cache.pop('version') # remove version
|
||||
labels, shapes, self.segments = zip(*cache.values())
|
||||
self.labels = list(labels)
|
||||
self.shapes = np.array(shapes, dtype=np.float64)
|
||||
self.img_files = list(cache.keys()) # update
|
||||
|
@ -451,6 +454,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||
im = Image.open(im_file)
|
||||
im.verify() # PIL verify
|
||||
shape = exif_size(im) # image size
|
||||
segments = [] # instance segments
|
||||
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
|
||||
assert im.format.lower() in img_formats, f'invalid image format {im.format}'
|
||||
|
||||
|
@ -458,7 +462,12 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||
if os.path.isfile(lb_file):
|
||||
nf += 1 # label found
|
||||
with open(lb_file, 'r') as f:
|
||||
l = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
|
||||
l = [x.split() for x in f.read().strip().splitlines()]
|
||||
if any([len(x) > 8 for x in l]): # is segment
|
||||
classes = np.array([x[0] for x in l], dtype=np.float32)
|
||||
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...)
|
||||
l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
|
||||
l = np.array(l, dtype=np.float32)
|
||||
if len(l):
|
||||
assert l.shape[1] == 5, 'labels require 5 columns each'
|
||||
assert (l >= 0).all(), 'negative labels'
|
||||
|
@ -470,7 +479,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||
else:
|
||||
nm += 1 # label missing
|
||||
l = np.zeros((0, 5), dtype=np.float32)
|
||||
x[im_file] = [l, shape]
|
||||
x[im_file] = [l, shape, segments]
|
||||
except Exception as e:
|
||||
nc += 1
|
||||
print(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}')
|
||||
|
@ -482,7 +491,8 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||
print(f'{prefix}WARNING: No labels found in {path}. See {help_url}')
|
||||
|
||||
x['hash'] = get_hash(self.label_files + self.img_files)
|
||||
x['results'] = [nf, nm, ne, nc, i + 1]
|
||||
x['results'] = nf, nm, ne, nc, i + 1
|
||||
x['version'] = 0.1 # cache version
|
||||
torch.save(x, path) # save for next time
|
||||
logging.info(f'{prefix}New cache created: {path}')
|
||||
return x
|
||||
|
@ -652,7 +662,7 @@ def hist_equalize(img, clahe=True, bgr=False):
|
|||
def load_mosaic(self, index):
|
||||
# loads images in a 4-mosaic
|
||||
|
||||
labels4 = []
|
||||
labels4, segments4 = [], []
|
||||
s = self.img_size
|
||||
yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
|
||||
indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] # 3 additional image indices
|
||||
|
@ -680,19 +690,21 @@ def load_mosaic(self, index):
|
|||
padh = y1a - y1b
|
||||
|
||||
# Labels
|
||||
labels = self.labels[index].copy()
|
||||
labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
||||
if labels.size:
|
||||
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
|
||||
segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
|
||||
labels4.append(labels)
|
||||
segments4.extend(segments)
|
||||
|
||||
# Concat/clip labels
|
||||
if len(labels4):
|
||||
labels4 = np.concatenate(labels4, 0)
|
||||
np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_perspective
|
||||
# img4, labels4 = replicate(img4, labels4) # replicate
|
||||
labels4 = np.concatenate(labels4, 0)
|
||||
for x in (labels4[:, 1:], *segments4):
|
||||
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
||||
# img4, labels4 = replicate(img4, labels4) # replicate
|
||||
|
||||
# Augment
|
||||
img4, labels4 = random_perspective(img4, labels4,
|
||||
img4, labels4 = random_perspective(img4, labels4, segments4,
|
||||
degrees=self.hyp['degrees'],
|
||||
translate=self.hyp['translate'],
|
||||
scale=self.hyp['scale'],
|
||||
|
@ -706,7 +718,7 @@ def load_mosaic(self, index):
|
|||
def load_mosaic9(self, index):
|
||||
# loads images in a 9-mosaic
|
||||
|
||||
labels9 = []
|
||||
labels9, segments9 = [], []
|
||||
s = self.img_size
|
||||
indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(8)] # 8 additional image indices
|
||||
for i, index in enumerate(indices):
|
||||
|
@ -739,30 +751,34 @@ def load_mosaic9(self, index):
|
|||
x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords
|
||||
|
||||
# Labels
|
||||
labels = self.labels[index].copy()
|
||||
labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
||||
if labels.size:
|
||||
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
|
||||
segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
|
||||
labels9.append(labels)
|
||||
segments9.extend(segments)
|
||||
|
||||
# Image
|
||||
img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
|
||||
hp, wp = h, w # height, width previous
|
||||
|
||||
# Offset
|
||||
yc, xc = [int(random.uniform(0, s)) for x in self.mosaic_border] # mosaic center x, y
|
||||
yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border] # mosaic center x, y
|
||||
img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
|
||||
|
||||
# Concat/clip labels
|
||||
if len(labels9):
|
||||
labels9 = np.concatenate(labels9, 0)
|
||||
labels9[:, [1, 3]] -= xc
|
||||
labels9[:, [2, 4]] -= yc
|
||||
labels9 = np.concatenate(labels9, 0)
|
||||
labels9[:, [1, 3]] -= xc
|
||||
labels9[:, [2, 4]] -= yc
|
||||
c = np.array([xc, yc]) # centers
|
||||
segments9 = [x - c for x in segments9]
|
||||
|
||||
np.clip(labels9[:, 1:], 0, 2 * s, out=labels9[:, 1:]) # use with random_perspective
|
||||
# img9, labels9 = replicate(img9, labels9) # replicate
|
||||
for x in (labels9[:, 1:], *segments9):
|
||||
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
||||
# img9, labels9 = replicate(img9, labels9) # replicate
|
||||
|
||||
# Augment
|
||||
img9, labels9 = random_perspective(img9, labels9,
|
||||
img9, labels9 = random_perspective(img9, labels9, segments9,
|
||||
degrees=self.hyp['degrees'],
|
||||
translate=self.hyp['translate'],
|
||||
scale=self.hyp['scale'],
|
||||
|
@ -823,7 +839,8 @@ def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scale
|
|||
return img, ratio, (dw, dh)
|
||||
|
||||
|
||||
def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
|
||||
def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
|
||||
border=(0, 0)):
|
||||
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
|
||||
# targets = [cls, xyxy]
|
||||
|
||||
|
@ -875,37 +892,38 @@ def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shea
|
|||
# Transform label coordinates
|
||||
n = len(targets)
|
||||
if n:
|
||||
# warp points
|
||||
xy = np.ones((n * 4, 3))
|
||||
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
||||
xy = xy @ M.T # transform
|
||||
if perspective:
|
||||
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
|
||||
else: # affine
|
||||
xy = xy[:, :2].reshape(n, 8)
|
||||
use_segments = any(x.any() for x in segments)
|
||||
new = np.zeros((n, 4))
|
||||
if use_segments: # warp segments
|
||||
segments = resample_segments(segments) # upsample
|
||||
for i, segment in enumerate(segments):
|
||||
xy = np.ones((len(segment), 3))
|
||||
xy[:, :2] = segment
|
||||
xy = xy @ M.T # transform
|
||||
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
|
||||
|
||||
# create new boxes
|
||||
x = xy[:, [0, 2, 4, 6]]
|
||||
y = xy[:, [1, 3, 5, 7]]
|
||||
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
||||
# clip
|
||||
new[i] = segment2box(xy, width, height)
|
||||
|
||||
# # apply angle-based reduction of bounding boxes
|
||||
# radians = a * math.pi / 180
|
||||
# reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
|
||||
# x = (xy[:, 2] + xy[:, 0]) / 2
|
||||
# y = (xy[:, 3] + xy[:, 1]) / 2
|
||||
# w = (xy[:, 2] - xy[:, 0]) * reduction
|
||||
# h = (xy[:, 3] - xy[:, 1]) * reduction
|
||||
# xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
|
||||
else: # warp boxes
|
||||
xy = np.ones((n * 4, 3))
|
||||
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
||||
xy = xy @ M.T # transform
|
||||
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
|
||||
|
||||
# clip boxes
|
||||
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
|
||||
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
|
||||
# create new boxes
|
||||
x = xy[:, [0, 2, 4, 6]]
|
||||
y = xy[:, [1, 3, 5, 7]]
|
||||
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
||||
|
||||
# clip
|
||||
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
|
||||
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
|
||||
|
||||
# filter candidates
|
||||
i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
|
||||
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
|
||||
targets = targets[i]
|
||||
targets[:, 1:5] = xy[i]
|
||||
targets[:, 1:5] = new[i]
|
||||
|
||||
return img, targets
|
||||
|
||||
|
|
|
@ -225,7 +225,7 @@ def xywh2xyxy(x):
|
|||
return y
|
||||
|
||||
|
||||
def xywhn2xyxy(x, w=640, h=640, padw=32, padh=32):
|
||||
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
|
||||
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
||||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
|
||||
|
@ -235,6 +235,40 @@ def xywhn2xyxy(x, w=640, h=640, padw=32, padh=32):
|
|||
return y
|
||||
|
||||
|
||||
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
|
||||
# Convert normalized segments into pixel segments, shape (n,2)
|
||||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||
y[:, 0] = w * x[:, 0] + padw # top left x
|
||||
y[:, 1] = h * x[:, 1] + padh # top left y
|
||||
return y
|
||||
|
||||
|
||||
def segment2box(segment, width=640, height=640):
|
||||
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
|
||||
x, y = segment.T # segment xy
|
||||
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
|
||||
x, y, = x[inside], y[inside]
|
||||
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # cls, xyxy
|
||||
|
||||
|
||||
def segments2boxes(segments):
|
||||
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
|
||||
boxes = []
|
||||
for s in segments:
|
||||
x, y = s.T # segment xy
|
||||
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
|
||||
return xyxy2xywh(np.array(boxes)) # cls, xywh
|
||||
|
||||
|
||||
def resample_segments(segments, n=1000):
|
||||
# Up-sample an (n,2) segment
|
||||
for i, s in enumerate(segments):
|
||||
x = np.linspace(0, len(s) - 1, n)
|
||||
xp = np.arange(len(s))
|
||||
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
|
||||
return segments
|
||||
|
||||
|
||||
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
||||
# Rescale coords (xyxy) from img1_shape to img0_shape
|
||||
if ratio_pad is None: # calculate from img0_shape
|
||||
|
|
|
@ -105,7 +105,7 @@ class ComputeLoss:
|
|||
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
||||
|
||||
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
|
||||
self.balance = {3: [3.67, 1.0, 0.43], 4: [4.0, 1.0, 0.25, 0.06], 5: [4.0, 1.0, 0.25, 0.06, .02]}[det.nl]
|
||||
self.balance = {3: [4.0, 1.0, 0.4], 4: [4.0, 1.0, 0.25, 0.06], 5: [4.0, 1.0, 0.25, 0.06, .02]}[det.nl]
|
||||
self.ssi = (det.stride == 16).nonzero(as_tuple=False).item() # stride 16 index
|
||||
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
|
||||
for k in 'na', 'nc', 'nl', 'anchors':
|
||||
|
|
Loading…
Reference in New Issue