Created using Colaboratory
parent
dbbc6b5c48
commit
bfad364455
|
@ -415,7 +415,7 @@
|
|||
"clear_output()\n",
|
||||
"print(f\"Setup complete. Using torch {torch.__version__} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})\")"
|
||||
],
|
||||
"execution_count": 1,
|
||||
"execution_count": null,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
|
@ -461,7 +461,7 @@
|
|||
"!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images/\n",
|
||||
"#Image(filename='runs/detect/exp/zidane.jpg', width=600)"
|
||||
],
|
||||
"execution_count": 4,
|
||||
"execution_count": null,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
|
@ -538,7 +538,7 @@
|
|||
"torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip')\n",
|
||||
"!unzip -q tmp.zip -d ../datasets && rm tmp.zip"
|
||||
],
|
||||
"execution_count": 5,
|
||||
"execution_count": null,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "display_data",
|
||||
|
@ -571,7 +571,7 @@
|
|||
"# Run YOLOv5x on COCO val2017\n",
|
||||
"!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half"
|
||||
],
|
||||
"execution_count": 6,
|
||||
"execution_count": null,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
|
@ -734,7 +734,7 @@
|
|||
"# Train YOLOv5s on COCO128 for 3 epochs\n",
|
||||
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
|
||||
],
|
||||
"execution_count": 8,
|
||||
"execution_count": null,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
|
@ -853,13 +853,13 @@
|
|||
"\n",
|
||||
"All results are logged by default to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc. View train and val jpgs to see mosaics, labels, predictions and augmentation effects. Note an Ultralytics **Mosaic Dataloader** is used for training (shown below), which combines 4 images into 1 mosaic during training.\n",
|
||||
"\n",
|
||||
"> <img src=\"https://user-images.githubusercontent.com/26833433/124931219-48bf8700-e002-11eb-84f0-e05d95b118dd.jpg\" width=\"700\"> \n",
|
||||
"> <img src=\"https://user-images.githubusercontent.com/26833433/131255960-b536647f-7c61-4f60-bbc5-cb2544d71b2a.jpg\" width=\"700\"> \n",
|
||||
"`train_batch0.jpg` shows train batch 0 mosaics and labels\n",
|
||||
"\n",
|
||||
"> <img src=\"https://user-images.githubusercontent.com/26833433/124931217-4826f080-e002-11eb-87b9-ae0925a8c94b.jpg\" width=\"700\"> \n",
|
||||
"> <img src=\"https://user-images.githubusercontent.com/26833433/131256748-603cafc7-55d1-4e58-ab26-83657761aed9.jpg\" width=\"700\"> \n",
|
||||
"`test_batch0_labels.jpg` shows val batch 0 labels\n",
|
||||
"\n",
|
||||
"> <img src=\"https://user-images.githubusercontent.com/26833433/124931209-46f5c380-e002-11eb-9bd5-7a3de2be9851.jpg\" width=\"700\"> \n",
|
||||
"> <img src=\"https://user-images.githubusercontent.com/26833433/131256752-3f25d7a5-7b0f-4bb3-ab78-46343c3800fe.jpg\" width=\"700\"> \n",
|
||||
"`test_batch0_pred.jpg` shows val batch 0 _predictions_\n",
|
||||
"\n",
|
||||
"Training results are automatically logged to [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) as `results.csv`, which is plotted as `results.png` (below) after training completes. You can also plot any `results.csv` file manually:\n",
|
||||
|
|
Loading…
Reference in New Issue