mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
Update hubconf.py for unified loading (#3005)
This commit is contained in:
parent
37eaffec7d
commit
c1a44ed9c5
34
hubconf.py
34
hubconf.py
@ -18,7 +18,7 @@ dependencies = ['torch', 'yaml']
|
||||
check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('tensorboard', 'pycocotools', 'thop'))
|
||||
|
||||
|
||||
def create(name, pretrained, channels, classes, autoshape, verbose):
|
||||
def create(name, pretrained, channels=3, classes=80, autoshape=True, verbose=True):
|
||||
"""Creates a specified YOLOv5 model
|
||||
|
||||
Arguments:
|
||||
@ -33,7 +33,7 @@ def create(name, pretrained, channels, classes, autoshape, verbose):
|
||||
YOLOv5 pytorch model
|
||||
"""
|
||||
set_logging(verbose=verbose)
|
||||
fname = f'{name}.pt' # checkpoint filename
|
||||
fname = Path(name).with_suffix('.pt') # checkpoint filename
|
||||
try:
|
||||
if pretrained and channels == 3 and classes == 80:
|
||||
model = attempt_load(fname, map_location=torch.device('cpu')) # download/load FP32 model
|
||||
@ -60,30 +60,9 @@ def create(name, pretrained, channels, classes, autoshape, verbose):
|
||||
raise Exception(s) from e
|
||||
|
||||
|
||||
def custom(path_or_model='path/to/model.pt', autoshape=True, verbose=True):
|
||||
"""YOLOv5-custom model https://github.com/ultralytics/yolov5
|
||||
|
||||
Arguments (3 options):
|
||||
path_or_model (str): 'path/to/model.pt'
|
||||
path_or_model (dict): torch.load('path/to/model.pt')
|
||||
path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
|
||||
|
||||
Returns:
|
||||
pytorch model
|
||||
"""
|
||||
set_logging(verbose=verbose)
|
||||
|
||||
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
|
||||
if isinstance(model, dict):
|
||||
model = model['ema' if model.get('ema') else 'model'] # load model
|
||||
|
||||
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
|
||||
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
|
||||
hub_model.names = model.names # class names
|
||||
if autoshape:
|
||||
hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
|
||||
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
|
||||
return hub_model.to(device)
|
||||
def custom(path='path/to/model.pt', autoshape=True, verbose=True):
|
||||
# YOLOv5 custom or local model
|
||||
return create(path, autoshape, verbose)
|
||||
|
||||
|
||||
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
|
||||
@ -127,7 +106,8 @@ def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=Tr
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
|
||||
model = create(name='weights/yolov5s.pt', pretrained=True, channels=3, classes=80, autoshape=True,
|
||||
verbose=True) # pretrained
|
||||
# model = custom(path_or_model='path/to/model.pt') # custom
|
||||
|
||||
# Verify inference
|
||||
|
Loading…
x
Reference in New Issue
Block a user