mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
Add TensorFlow formats to export.py
(#4479)
* Initial commit * Remove unused export_torchscript return * ROOT variable * Add prefix to fcn arg * fix ROOT * check_yaml into run() * interim fixes * imgsz=(320, 320) * Hardcode tf_raw_resize False * Finish opt elimination * Update representative_dataset_gen() * Update export.py with TF methods * SiLU and GraphDef fixes * file_size() directory handling feature * export fixes * add lambda: to representative_dataset * Detect training False default * Fuse false for TF models * Embed agnostic NMS arguments * Remove lambda * TensorFlow.js export success * Add pb to Usage * Add *_tfjs_model/ to ignore files * prepend YOLOv5 to function headers * Remove end --- comments * parameterize tfjs export pb file * update run() data default /ROOT * update --include help * update imports * return ct_model * Consolidate TFLite export * pb prerequisite to tfjs * TF modules CamelCase * Remove exports from tf.py and cleanup * pass agnostic NMS arguments * CI * CI * ignore *_web_model/ * Add tensorflow to CI dependencies * CI tensorflow-cpu * Update requirements.txt * Remove tensorflow check_requirement * CI coreml tfjs * export only onnx torchscript * reorder exports torchscript first
This commit is contained in:
parent
c47be26f34
commit
c3a93d783d
@ -22,6 +22,7 @@ data/samples/*
|
||||
**/*.h5
|
||||
**/*.pb
|
||||
*_saved_model/
|
||||
*_web_model/
|
||||
|
||||
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
||||
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
||||
|
7
.github/workflows/ci-testing.yml
vendored
7
.github/workflows/ci-testing.yml
vendored
@ -48,7 +48,7 @@ jobs:
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install -qr requirements.txt -f https://download.pytorch.org/whl/cpu/torch_stable.html
|
||||
pip install -q onnx onnx-simplifier coremltools # for export
|
||||
pip install -q onnx tensorflow-cpu # for export
|
||||
python --version
|
||||
pip --version
|
||||
pip list
|
||||
@ -75,6 +75,7 @@ jobs:
|
||||
python val.py --img 128 --batch 16 --weights runs/train/exp/weights/last.pt --device $di
|
||||
|
||||
python hubconf.py # hub
|
||||
python models/yolo.py --cfg ${{ matrix.model }}.yaml # inspect
|
||||
python export.py --img 128 --batch 1 --weights ${{ matrix.model }}.pt --include onnx torchscript # export
|
||||
python models/yolo.py --cfg ${{ matrix.model }}.yaml # build PyTorch model
|
||||
python models/tf.py --weights ${{ matrix.model }}.pt # build TensorFlow model
|
||||
python export.py --img 128 --batch 1 --weights ${{ matrix.model }}.pt --include torchscript onnx # export
|
||||
shell: bash
|
||||
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -52,6 +52,7 @@ VOC/
|
||||
*.tflite
|
||||
*.h5
|
||||
*_saved_model/
|
||||
*_web_model/
|
||||
darknet53.conv.74
|
||||
yolov3-tiny.conv.15
|
||||
|
||||
|
@ -253,7 +253,7 @@ def run(weights='yolov5s.pt', # model.pt path(s)
|
||||
|
||||
def parse_opt():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
|
||||
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model path(s)')
|
||||
parser.add_argument('--source', type=str, default='data/images', help='file/dir/URL/glob, 0 for webcam')
|
||||
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
||||
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
|
||||
|
219
export.py
219
export.py
@ -1,12 +1,28 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
Export a PyTorch model to TorchScript, ONNX, CoreML formats
|
||||
Export a YOLOv5 PyTorch model to TorchScript, ONNX, CoreML, TensorFlow (saved_model, pb, TFLite, TF.js,) formats
|
||||
TensorFlow exports authored by https://github.com/zldrobit
|
||||
|
||||
Usage:
|
||||
$ python path/to/export.py --weights yolov5s.pt --img 640 --batch 1
|
||||
$ python path/to/export.py --weights yolov5s.pt --include torchscript onnx coreml saved_model pb tflite tfjs
|
||||
|
||||
Inference:
|
||||
$ python path/to/detect.py --weights yolov5s.pt
|
||||
yolov5s.onnx (must export with --dynamic)
|
||||
yolov5s_saved_model
|
||||
yolov5s.pb
|
||||
yolov5s.tflite
|
||||
|
||||
TensorFlow.js:
|
||||
$ # Edit yolov5s_web_model/model.json to sort Identity* in ascending order
|
||||
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
|
||||
$ npm install
|
||||
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
|
||||
$ npm start
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
from pathlib import Path
|
||||
@ -16,40 +32,42 @@ import torch.nn as nn
|
||||
from torch.utils.mobile_optimizer import optimize_for_mobile
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
|
||||
ROOT = FILE.parents[0] # yolov5/ dir
|
||||
sys.path.append(ROOT.as_posix()) # add yolov5/ to path
|
||||
|
||||
from models.common import Conv
|
||||
from models.yolo import Detect
|
||||
from models.experimental import attempt_load
|
||||
from utils.activations import Hardswish, SiLU
|
||||
from utils.general import colorstr, check_img_size, check_requirements, file_size, set_logging
|
||||
from models.yolo import Detect
|
||||
from utils.activations import SiLU
|
||||
from utils.datasets import LoadImages
|
||||
from utils.general import colorstr, check_dataset, check_img_size, check_requirements, file_size, set_logging
|
||||
from utils.torch_utils import select_device
|
||||
|
||||
|
||||
def export_torchscript(model, img, file, optimize):
|
||||
# TorchScript model export
|
||||
prefix = colorstr('TorchScript:')
|
||||
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
|
||||
# YOLOv5 TorchScript model export
|
||||
try:
|
||||
print(f'\n{prefix} starting export with torch {torch.__version__}...')
|
||||
f = file.with_suffix('.torchscript.pt')
|
||||
ts = torch.jit.trace(model, img, strict=False)
|
||||
|
||||
ts = torch.jit.trace(model, im, strict=False)
|
||||
(optimize_for_mobile(ts) if optimize else ts).save(f)
|
||||
|
||||
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
return ts
|
||||
except Exception as e:
|
||||
print(f'{prefix} export failure: {e}')
|
||||
|
||||
|
||||
def export_onnx(model, img, file, opset, train, dynamic, simplify):
|
||||
# ONNX model export
|
||||
prefix = colorstr('ONNX:')
|
||||
def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
|
||||
# YOLOv5 ONNX export
|
||||
try:
|
||||
check_requirements(('onnx',))
|
||||
import onnx
|
||||
|
||||
print(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
||||
f = file.with_suffix('.onnx')
|
||||
torch.onnx.export(model, img, f, verbose=False, opset_version=opset,
|
||||
|
||||
torch.onnx.export(model, im, f, verbose=False, opset_version=opset,
|
||||
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
|
||||
do_constant_folding=not train,
|
||||
input_names=['images'],
|
||||
@ -73,7 +91,7 @@ def export_onnx(model, img, file, opset, train, dynamic, simplify):
|
||||
model_onnx, check = onnxsim.simplify(
|
||||
model_onnx,
|
||||
dynamic_input_shape=dynamic,
|
||||
input_shapes={'images': list(img.shape)} if dynamic else None)
|
||||
input_shapes={'images': list(im.shape)} if dynamic else None)
|
||||
assert check, 'assert check failed'
|
||||
onnx.save(model_onnx, f)
|
||||
except Exception as e:
|
||||
@ -84,26 +102,131 @@ def export_onnx(model, img, file, opset, train, dynamic, simplify):
|
||||
print(f'{prefix} export failure: {e}')
|
||||
|
||||
|
||||
def export_coreml(model, img, file):
|
||||
# CoreML model export
|
||||
prefix = colorstr('CoreML:')
|
||||
def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
|
||||
# YOLOv5 CoreML export
|
||||
ct_model = None
|
||||
try:
|
||||
check_requirements(('coremltools',))
|
||||
import coremltools as ct
|
||||
|
||||
print(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
||||
f = file.with_suffix('.mlmodel')
|
||||
|
||||
model.train() # CoreML exports should be placed in model.train() mode
|
||||
ts = torch.jit.trace(model, img, strict=False) # TorchScript model
|
||||
model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
||||
model.save(f)
|
||||
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
|
||||
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
||||
ct_model.save(f)
|
||||
|
||||
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
except Exception as e:
|
||||
print(f'\n{prefix} export failure: {e}')
|
||||
|
||||
return ct_model
|
||||
|
||||
|
||||
def export_saved_model(model, im, file, dynamic,
|
||||
tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
|
||||
conf_thres=0.25, prefix=colorstr('TensorFlow saved_model:')):
|
||||
# YOLOv5 TensorFlow saved_model export
|
||||
keras_model = None
|
||||
try:
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
from models.tf import TFModel, TFDetect
|
||||
|
||||
print(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||||
f = str(file).replace('.pt', '_saved_model')
|
||||
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
||||
|
||||
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
||||
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC order for TensorFlow
|
||||
y = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
||||
inputs = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
|
||||
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
||||
keras_model = keras.Model(inputs=inputs, outputs=outputs)
|
||||
keras_model.summary()
|
||||
keras_model.save(f, save_format='tf')
|
||||
|
||||
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
except Exception as e:
|
||||
print(f'\n{prefix} export failure: {e}')
|
||||
|
||||
return keras_model
|
||||
|
||||
|
||||
def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')):
|
||||
# YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
||||
try:
|
||||
import tensorflow as tf
|
||||
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
||||
|
||||
print(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||||
f = file.with_suffix('.pb')
|
||||
|
||||
m = tf.function(lambda x: keras_model(x)) # full model
|
||||
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
||||
frozen_func = convert_variables_to_constants_v2(m)
|
||||
frozen_func.graph.as_graph_def()
|
||||
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
||||
|
||||
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
except Exception as e:
|
||||
print(f'\n{prefix} export failure: {e}')
|
||||
|
||||
|
||||
def run(weights='./yolov5s.pt', # weights path
|
||||
img_size=(640, 640), # image (height, width)
|
||||
def export_tflite(keras_model, im, file, tfl_int8, data, ncalib, prefix=colorstr('TensorFlow Lite:')):
|
||||
# YOLOv5 TensorFlow Lite export
|
||||
try:
|
||||
import tensorflow as tf
|
||||
from models.tf import representative_dataset_gen
|
||||
|
||||
print(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||||
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
||||
f = file.with_suffix('.tflite')
|
||||
|
||||
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
||||
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
||||
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
||||
if tfl_int8:
|
||||
dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data
|
||||
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib)
|
||||
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
||||
converter.inference_input_type = tf.uint8 # or tf.int8
|
||||
converter.inference_output_type = tf.uint8 # or tf.int8
|
||||
converter.experimental_new_quantizer = False
|
||||
f = str(file).replace('.pt', '-int8.tflite')
|
||||
|
||||
tflite_model = converter.convert()
|
||||
open(f, "wb").write(tflite_model)
|
||||
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
|
||||
except Exception as e:
|
||||
print(f'\n{prefix} export failure: {e}')
|
||||
|
||||
|
||||
def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
|
||||
# YOLOv5 TensorFlow.js export
|
||||
try:
|
||||
check_requirements(('tensorflowjs',))
|
||||
import tensorflowjs as tfjs
|
||||
|
||||
print(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
|
||||
f = str(file).replace('.pt', '_web_model') # js dir
|
||||
f_pb = file.with_suffix('.pb') # *.pb path
|
||||
|
||||
cmd = f"tensorflowjs_converter --input_format=tf_frozen_model " \
|
||||
f"--output_node_names='Identity,Identity_1,Identity_2,Identity_3' {f_pb} {f}"
|
||||
subprocess.run(cmd, shell=True)
|
||||
|
||||
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
except Exception as e:
|
||||
print(f'\n{prefix} export failure: {e}')
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
||||
weights=ROOT / 'yolov5s.pt', # weights path
|
||||
imgsz=(640, 640), # image (height, width)
|
||||
batch_size=1, # batch size
|
||||
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
include=('torchscript', 'onnx', 'coreml'), # include formats
|
||||
@ -117,29 +240,28 @@ def run(weights='./yolov5s.pt', # weights path
|
||||
):
|
||||
t = time.time()
|
||||
include = [x.lower() for x in include]
|
||||
img_size *= 2 if len(img_size) == 1 else 1 # expand
|
||||
tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'tfjs')) # TensorFlow exports
|
||||
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
|
||||
file = Path(weights)
|
||||
|
||||
# Load PyTorch model
|
||||
device = select_device(device)
|
||||
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
|
||||
model = attempt_load(weights, map_location=device) # load FP32 model
|
||||
names = model.names
|
||||
model = attempt_load(weights, map_location=device, inplace=True, fuse=not any(tf_exports)) # load FP32 model
|
||||
nc, names = model.nc, model.names # number of classes, class names
|
||||
|
||||
# Input
|
||||
gs = int(max(model.stride)) # grid size (max stride)
|
||||
img_size = [check_img_size(x, gs) for x in img_size] # verify img_size are gs-multiples
|
||||
img = torch.zeros(batch_size, 3, *img_size).to(device) # image size(1,3,320,192) iDetection
|
||||
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
|
||||
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
|
||||
|
||||
# Update model
|
||||
if half:
|
||||
img, model = img.half(), model.half() # to FP16
|
||||
im, model = im.half(), model.half() # to FP16
|
||||
model.train() if train else model.eval() # training mode = no Detect() layer grid construction
|
||||
for k, m in model.named_modules():
|
||||
if isinstance(m, Conv): # assign export-friendly activations
|
||||
if isinstance(m.act, nn.Hardswish):
|
||||
m.act = Hardswish()
|
||||
elif isinstance(m.act, nn.SiLU):
|
||||
if isinstance(m.act, nn.SiLU):
|
||||
m.act = SiLU()
|
||||
elif isinstance(m, Detect):
|
||||
m.inplace = inplace
|
||||
@ -147,16 +269,28 @@ def run(weights='./yolov5s.pt', # weights path
|
||||
# m.forward = m.forward_export # assign forward (optional)
|
||||
|
||||
for _ in range(2):
|
||||
y = model(img) # dry runs
|
||||
y = model(im) # dry runs
|
||||
print(f"\n{colorstr('PyTorch:')} starting from {weights} ({file_size(weights):.1f} MB)")
|
||||
|
||||
# Exports
|
||||
if 'torchscript' in include:
|
||||
export_torchscript(model, img, file, optimize)
|
||||
export_torchscript(model, im, file, optimize)
|
||||
if 'onnx' in include:
|
||||
export_onnx(model, img, file, opset, train, dynamic, simplify)
|
||||
export_onnx(model, im, file, opset, train, dynamic, simplify)
|
||||
if 'coreml' in include:
|
||||
export_coreml(model, img, file)
|
||||
export_coreml(model, im, file)
|
||||
|
||||
# TensorFlow Exports
|
||||
if any(tf_exports):
|
||||
pb, tflite, tfjs = tf_exports[1:]
|
||||
assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
||||
model = export_saved_model(model, im, file, dynamic, tf_nms=tfjs, agnostic_nms=tfjs) # keras model
|
||||
if pb or tfjs: # pb prerequisite to tfjs
|
||||
export_pb(model, im, file)
|
||||
if tflite:
|
||||
export_tflite(model, im, file, tfl_int8=False, data=data, ncalib=100)
|
||||
if tfjs:
|
||||
export_tfjs(model, im, file)
|
||||
|
||||
# Finish
|
||||
print(f'\nExport complete ({time.time() - t:.2f}s)'
|
||||
@ -166,18 +300,21 @@ def run(weights='./yolov5s.pt', # weights path
|
||||
|
||||
def parse_opt():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
|
||||
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image (height, width)')
|
||||
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
||||
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
|
||||
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
|
||||
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
||||
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||
parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats')
|
||||
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
||||
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
|
||||
parser.add_argument('--train', action='store_true', help='model.train() mode')
|
||||
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
|
||||
parser.add_argument('--dynamic', action='store_true', help='ONNX: dynamic axes')
|
||||
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes')
|
||||
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
|
||||
parser.add_argument('--opset', type=int, default=13, help='ONNX: opset version')
|
||||
parser.add_argument('--include', nargs='+',
|
||||
default=['torchscript', 'onnx'],
|
||||
help='available formats are (torchscript, onnx, coreml, saved_model, pb, tflite, tfjs)')
|
||||
opt = parser.parse_args()
|
||||
return opt
|
||||
|
||||
|
419
models/tf.py
419
models/tf.py
@ -1,67 +1,44 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
TensorFlow/Keras and TFLite versions of YOLOv5
|
||||
TensorFlow, Keras and TFLite versions of YOLOv5
|
||||
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
|
||||
|
||||
Usage:
|
||||
$ python models/tf.py --weights yolov5s.pt --cfg yolov5s.yaml
|
||||
$ python models/tf.py --weights yolov5s.pt
|
||||
|
||||
Export int8 TFLite models:
|
||||
$ python models/tf.py --weights yolov5s.pt --cfg models/yolov5s.yaml --tfl-int8 \
|
||||
--source path/to/images/ --ncalib 100
|
||||
|
||||
Detection:
|
||||
$ python detect.py --weights yolov5s.pb --img 320
|
||||
$ python detect.py --weights yolov5s_saved_model --img 320
|
||||
$ python detect.py --weights yolov5s-fp16.tflite --img 320
|
||||
$ python detect.py --weights yolov5s-int8.tflite --img 320 --tfl-int8
|
||||
|
||||
For TensorFlow.js:
|
||||
$ python models/tf.py --weights yolov5s.pt --cfg models/yolov5s.yaml --img 320 --tf-nms --agnostic-nms
|
||||
$ pip install tensorflowjs
|
||||
$ tensorflowjs_converter \
|
||||
--input_format=tf_frozen_model \
|
||||
--output_node_names='Identity,Identity_1,Identity_2,Identity_3' \
|
||||
yolov5s.pb \
|
||||
web_model
|
||||
$ # Edit web_model/model.json to sort Identity* in ascending order
|
||||
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
|
||||
$ npm install
|
||||
$ ln -s ../../yolov5/web_model public/web_model
|
||||
$ npm start
|
||||
Export:
|
||||
$ python path/to/export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[1] # yolov5/ dir
|
||||
sys.path.append(ROOT.as_posix()) # add yolov5/ to path
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import yaml
|
||||
from tensorflow import keras
|
||||
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
||||
|
||||
from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, Concat, autopad, C3
|
||||
from models.experimental import MixConv2d, CrossConv, attempt_load
|
||||
from models.yolo import Detect
|
||||
from utils.datasets import LoadImages
|
||||
from utils.general import check_dataset, check_yaml, make_divisible
|
||||
from utils.general import colorstr, make_divisible, set_logging
|
||||
from utils.activations import SiLU
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
LOGGER = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class tf_BN(keras.layers.Layer):
|
||||
class TFBN(keras.layers.Layer):
|
||||
# TensorFlow BatchNormalization wrapper
|
||||
def __init__(self, w=None):
|
||||
super(tf_BN, self).__init__()
|
||||
super(TFBN, self).__init__()
|
||||
self.bn = keras.layers.BatchNormalization(
|
||||
beta_initializer=keras.initializers.Constant(w.bias.numpy()),
|
||||
gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
|
||||
@ -73,20 +50,20 @@ class tf_BN(keras.layers.Layer):
|
||||
return self.bn(inputs)
|
||||
|
||||
|
||||
class tf_Pad(keras.layers.Layer):
|
||||
class TFPad(keras.layers.Layer):
|
||||
def __init__(self, pad):
|
||||
super(tf_Pad, self).__init__()
|
||||
super(TFPad, self).__init__()
|
||||
self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
|
||||
|
||||
def call(self, inputs):
|
||||
return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
|
||||
|
||||
|
||||
class tf_Conv(keras.layers.Layer):
|
||||
class TFConv(keras.layers.Layer):
|
||||
# Standard convolution
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
||||
# ch_in, ch_out, weights, kernel, stride, padding, groups
|
||||
super(tf_Conv, self).__init__()
|
||||
super(TFConv, self).__init__()
|
||||
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
||||
assert isinstance(k, int), "Convolution with multiple kernels are not allowed."
|
||||
# TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
|
||||
@ -95,27 +72,29 @@ class tf_Conv(keras.layers.Layer):
|
||||
conv = keras.layers.Conv2D(
|
||||
c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False,
|
||||
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()))
|
||||
self.conv = conv if s == 1 else keras.Sequential([tf_Pad(autopad(k, p)), conv])
|
||||
self.bn = tf_BN(w.bn) if hasattr(w, 'bn') else tf.identity
|
||||
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
|
||||
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
|
||||
|
||||
# YOLOv5 activations
|
||||
if isinstance(w.act, nn.LeakyReLU):
|
||||
self.act = (lambda x: keras.activations.relu(x, alpha=0.1)) if act else tf.identity
|
||||
elif isinstance(w.act, nn.Hardswish):
|
||||
self.act = (lambda x: x * tf.nn.relu6(x + 3) * 0.166666667) if act else tf.identity
|
||||
elif isinstance(w.act, nn.SiLU):
|
||||
elif isinstance(w.act, (nn.SiLU, SiLU)):
|
||||
self.act = (lambda x: keras.activations.swish(x)) if act else tf.identity
|
||||
else:
|
||||
raise Exception(f'no matching TensorFlow activation found for {w.act}')
|
||||
|
||||
def call(self, inputs):
|
||||
return self.act(self.bn(self.conv(inputs)))
|
||||
|
||||
|
||||
class tf_Focus(keras.layers.Layer):
|
||||
class TFFocus(keras.layers.Layer):
|
||||
# Focus wh information into c-space
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
||||
# ch_in, ch_out, kernel, stride, padding, groups
|
||||
super(tf_Focus, self).__init__()
|
||||
self.conv = tf_Conv(c1 * 4, c2, k, s, p, g, act, w.conv)
|
||||
super(TFFocus, self).__init__()
|
||||
self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
|
||||
|
||||
def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
|
||||
# inputs = inputs / 255. # normalize 0-255 to 0-1
|
||||
@ -125,23 +104,23 @@ class tf_Focus(keras.layers.Layer):
|
||||
inputs[:, 1::2, 1::2, :]], 3))
|
||||
|
||||
|
||||
class tf_Bottleneck(keras.layers.Layer):
|
||||
class TFBottleneck(keras.layers.Layer):
|
||||
# Standard bottleneck
|
||||
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
|
||||
super(tf_Bottleneck, self).__init__()
|
||||
super(TFBottleneck, self).__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1)
|
||||
self.cv2 = tf_Conv(c_, c2, 3, 1, g=g, w=w.cv2)
|
||||
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
||||
self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
|
||||
self.add = shortcut and c1 == c2
|
||||
|
||||
def call(self, inputs):
|
||||
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
|
||||
|
||||
|
||||
class tf_Conv2d(keras.layers.Layer):
|
||||
class TFConv2d(keras.layers.Layer):
|
||||
# Substitution for PyTorch nn.Conv2D
|
||||
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
|
||||
super(tf_Conv2d, self).__init__()
|
||||
super(TFConv2d, self).__init__()
|
||||
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
||||
self.conv = keras.layers.Conv2D(
|
||||
c2, k, s, 'VALID', use_bias=bias,
|
||||
@ -152,19 +131,19 @@ class tf_Conv2d(keras.layers.Layer):
|
||||
return self.conv(inputs)
|
||||
|
||||
|
||||
class tf_BottleneckCSP(keras.layers.Layer):
|
||||
class TFBottleneckCSP(keras.layers.Layer):
|
||||
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
||||
# ch_in, ch_out, number, shortcut, groups, expansion
|
||||
super(tf_BottleneckCSP, self).__init__()
|
||||
super(TFBottleneckCSP, self).__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1)
|
||||
self.cv2 = tf_Conv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
|
||||
self.cv3 = tf_Conv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
|
||||
self.cv4 = tf_Conv(2 * c_, c2, 1, 1, w=w.cv4)
|
||||
self.bn = tf_BN(w.bn)
|
||||
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
||||
self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
|
||||
self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
|
||||
self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
|
||||
self.bn = TFBN(w.bn)
|
||||
self.act = lambda x: keras.activations.relu(x, alpha=0.1)
|
||||
self.m = keras.Sequential([tf_Bottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
||||
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
||||
|
||||
def call(self, inputs):
|
||||
y1 = self.cv3(self.m(self.cv1(inputs)))
|
||||
@ -172,28 +151,28 @@ class tf_BottleneckCSP(keras.layers.Layer):
|
||||
return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
|
||||
|
||||
|
||||
class tf_C3(keras.layers.Layer):
|
||||
class TFC3(keras.layers.Layer):
|
||||
# CSP Bottleneck with 3 convolutions
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
||||
# ch_in, ch_out, number, shortcut, groups, expansion
|
||||
super(tf_C3, self).__init__()
|
||||
super(TFC3, self).__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1)
|
||||
self.cv2 = tf_Conv(c1, c_, 1, 1, w=w.cv2)
|
||||
self.cv3 = tf_Conv(2 * c_, c2, 1, 1, w=w.cv3)
|
||||
self.m = keras.Sequential([tf_Bottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
||||
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
||||
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
|
||||
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
|
||||
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
||||
|
||||
def call(self, inputs):
|
||||
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
|
||||
|
||||
|
||||
class tf_SPP(keras.layers.Layer):
|
||||
class TFSPP(keras.layers.Layer):
|
||||
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
||||
def __init__(self, c1, c2, k=(5, 9, 13), w=None):
|
||||
super(tf_SPP, self).__init__()
|
||||
super(TFSPP, self).__init__()
|
||||
c_ = c1 // 2 # hidden channels
|
||||
self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1)
|
||||
self.cv2 = tf_Conv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
|
||||
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
||||
self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
|
||||
self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
|
||||
|
||||
def call(self, inputs):
|
||||
@ -201,9 +180,9 @@ class tf_SPP(keras.layers.Layer):
|
||||
return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
|
||||
|
||||
|
||||
class tf_Detect(keras.layers.Layer):
|
||||
def __init__(self, nc=80, anchors=(), ch=(), w=None): # detection layer
|
||||
super(tf_Detect, self).__init__()
|
||||
class TFDetect(keras.layers.Layer):
|
||||
def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer
|
||||
super(TFDetect, self).__init__()
|
||||
self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
|
||||
self.nc = nc # number of classes
|
||||
self.no = nc + 5 # number of outputs per anchor
|
||||
@ -213,22 +192,20 @@ class tf_Detect(keras.layers.Layer):
|
||||
self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
|
||||
self.anchor_grid = tf.reshape(tf.convert_to_tensor(w.anchor_grid.numpy(), dtype=tf.float32),
|
||||
[self.nl, 1, -1, 1, 2])
|
||||
self.m = [tf_Conv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
|
||||
self.export = False # onnx export
|
||||
self.training = True # set to False after building model
|
||||
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
|
||||
self.training = False # set to False after building model
|
||||
self.imgsz = imgsz
|
||||
for i in range(self.nl):
|
||||
ny, nx = opt.img_size[0] // self.stride[i], opt.img_size[1] // self.stride[i]
|
||||
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
|
||||
self.grid[i] = self._make_grid(nx, ny)
|
||||
|
||||
def call(self, inputs):
|
||||
# x = x.copy() # for profiling
|
||||
z = [] # inference output
|
||||
self.training |= self.export
|
||||
x = []
|
||||
for i in range(self.nl):
|
||||
x.append(self.m[i](inputs[i]))
|
||||
# x(bs,20,20,255) to x(bs,3,20,20,85)
|
||||
ny, nx = opt.img_size[0] // self.stride[i], opt.img_size[1] // self.stride[i]
|
||||
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
|
||||
x[i] = tf.transpose(tf.reshape(x[i], [-1, ny * nx, self.na, self.no]), [0, 2, 1, 3])
|
||||
|
||||
if not self.training: # inference
|
||||
@ -236,8 +213,8 @@ class tf_Detect(keras.layers.Layer):
|
||||
xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
||||
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]
|
||||
# Normalize xywh to 0-1 to reduce calibration error
|
||||
xy /= tf.constant([[opt.img_size[1], opt.img_size[0]]], dtype=tf.float32)
|
||||
wh /= tf.constant([[opt.img_size[1], opt.img_size[0]]], dtype=tf.float32)
|
||||
xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
||||
wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
||||
y = tf.concat([xy, wh, y[..., 4:]], -1)
|
||||
z.append(tf.reshape(y, [-1, 3 * ny * nx, self.no]))
|
||||
|
||||
@ -251,25 +228,23 @@ class tf_Detect(keras.layers.Layer):
|
||||
return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
|
||||
|
||||
|
||||
class tf_Upsample(keras.layers.Layer):
|
||||
def __init__(self, size, scale_factor, mode, w=None):
|
||||
super(tf_Upsample, self).__init__()
|
||||
class TFUpsample(keras.layers.Layer):
|
||||
def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w'
|
||||
super(TFUpsample, self).__init__()
|
||||
assert scale_factor == 2, "scale_factor must be 2"
|
||||
self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
|
||||
# self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
|
||||
if opt.tf_raw_resize:
|
||||
# with default arguments: align_corners=False, half_pixel_centers=False
|
||||
self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
|
||||
size=(x.shape[1] * 2, x.shape[2] * 2))
|
||||
else:
|
||||
self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
|
||||
# with default arguments: align_corners=False, half_pixel_centers=False
|
||||
# self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
|
||||
# size=(x.shape[1] * 2, x.shape[2] * 2))
|
||||
|
||||
def call(self, inputs):
|
||||
return self.upsample(inputs)
|
||||
|
||||
|
||||
class tf_Concat(keras.layers.Layer):
|
||||
class TFConcat(keras.layers.Layer):
|
||||
def __init__(self, dimension=1, w=None):
|
||||
super(tf_Concat, self).__init__()
|
||||
super(TFConcat, self).__init__()
|
||||
assert dimension == 1, "convert only NCHW to NHWC concat"
|
||||
self.d = 3
|
||||
|
||||
@ -277,8 +252,8 @@ class tf_Concat(keras.layers.Layer):
|
||||
return tf.concat(inputs, self.d)
|
||||
|
||||
|
||||
def parse_model(d, ch, model): # model_dict, input_channels(3)
|
||||
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
|
||||
def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
|
||||
LOGGER.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
|
||||
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
||||
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
||||
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
||||
@ -310,10 +285,11 @@ def parse_model(d, ch, model): # model_dict, input_channels(3)
|
||||
args.append([ch[x + 1] for x in f])
|
||||
if isinstance(args[1], int): # number of anchors
|
||||
args[1] = [list(range(args[1] * 2))] * len(f)
|
||||
args.append(imgsz)
|
||||
else:
|
||||
c2 = ch[f]
|
||||
|
||||
tf_m = eval('tf_' + m_str.replace('nn.', ''))
|
||||
tf_m = eval('TF' + m_str.replace('nn.', ''))
|
||||
m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
|
||||
else tf_m(*args, w=model.model[i]) # module
|
||||
|
||||
@ -321,16 +297,16 @@ def parse_model(d, ch, model): # model_dict, input_channels(3)
|
||||
t = str(m)[8:-2].replace('__main__.', '') # module type
|
||||
np = sum([x.numel() for x in torch_m_.parameters()]) # number params
|
||||
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
||||
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
|
||||
LOGGER.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
|
||||
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
||||
layers.append(m_)
|
||||
ch.append(c2)
|
||||
return keras.Sequential(layers), sorted(save)
|
||||
|
||||
|
||||
class tf_Model():
|
||||
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None): # model, input channels, number of classes
|
||||
super(tf_Model, self).__init__()
|
||||
class TFModel:
|
||||
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes
|
||||
super(TFModel, self).__init__()
|
||||
if isinstance(cfg, dict):
|
||||
self.yaml = cfg # model dict
|
||||
else: # is *.yaml
|
||||
@ -343,9 +319,10 @@ class tf_Model():
|
||||
if nc and nc != self.yaml['nc']:
|
||||
print('Overriding %s nc=%g with nc=%g' % (cfg, self.yaml['nc'], nc))
|
||||
self.yaml['nc'] = nc # override yaml value
|
||||
self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model) # model, savelist, ch_out
|
||||
self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
|
||||
|
||||
def predict(self, inputs, profile=False):
|
||||
def predict(self, inputs, tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
|
||||
conf_thres=0.25):
|
||||
y = [] # outputs
|
||||
x = inputs
|
||||
for i, m in enumerate(self.model.layers):
|
||||
@ -356,18 +333,18 @@ class tf_Model():
|
||||
y.append(x if m.i in self.savelist else None) # save output
|
||||
|
||||
# Add TensorFlow NMS
|
||||
if opt.tf_nms:
|
||||
boxes = xywh2xyxy(x[0][..., :4])
|
||||
if tf_nms:
|
||||
boxes = self._xywh2xyxy(x[0][..., :4])
|
||||
probs = x[0][:, :, 4:5]
|
||||
classes = x[0][:, :, 5:]
|
||||
scores = probs * classes
|
||||
if opt.agnostic_nms:
|
||||
nms = agnostic_nms_layer()((boxes, classes, scores))
|
||||
if agnostic_nms:
|
||||
nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
|
||||
return nms, x[1]
|
||||
else:
|
||||
boxes = tf.expand_dims(boxes, 2)
|
||||
nms = tf.image.combined_non_max_suppression(
|
||||
boxes, scores, opt.topk_per_class, opt.topk_all, opt.iou_thres, opt.score_thres, clip_boxes=False)
|
||||
boxes, scores, topk_per_class, topk_all, iou_thres, conf_thres, clip_boxes=False)
|
||||
return nms, x[1]
|
||||
|
||||
return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...]
|
||||
@ -377,182 +354,94 @@ class tf_Model():
|
||||
# cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
|
||||
# return tf.concat([conf, cls, xywh], 1)
|
||||
|
||||
@staticmethod
|
||||
def _xywh2xyxy(xywh):
|
||||
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
||||
x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
|
||||
return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
|
||||
|
||||
class agnostic_nms_layer(keras.layers.Layer):
|
||||
# wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
|
||||
def call(self, input):
|
||||
return tf.map_fn(agnostic_nms, input,
|
||||
|
||||
class AgnosticNMS(keras.layers.Layer):
|
||||
# TF Agnostic NMS
|
||||
def call(self, input, topk_all, iou_thres, conf_thres):
|
||||
# wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
|
||||
return tf.map_fn(self._nms, input,
|
||||
fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
|
||||
name='agnostic_nms')
|
||||
|
||||
|
||||
def agnostic_nms(x):
|
||||
boxes, classes, scores = x
|
||||
class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
|
||||
scores_inp = tf.reduce_max(scores, -1)
|
||||
selected_inds = tf.image.non_max_suppression(
|
||||
boxes, scores_inp, max_output_size=opt.topk_all, iou_threshold=opt.iou_thres, score_threshold=opt.score_thres)
|
||||
selected_boxes = tf.gather(boxes, selected_inds)
|
||||
padded_boxes = tf.pad(selected_boxes,
|
||||
paddings=[[0, opt.topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
|
||||
mode="CONSTANT", constant_values=0.0)
|
||||
selected_scores = tf.gather(scores_inp, selected_inds)
|
||||
padded_scores = tf.pad(selected_scores,
|
||||
paddings=[[0, opt.topk_all - tf.shape(selected_boxes)[0]]],
|
||||
mode="CONSTANT", constant_values=-1.0)
|
||||
selected_classes = tf.gather(class_inds, selected_inds)
|
||||
padded_classes = tf.pad(selected_classes,
|
||||
paddings=[[0, opt.topk_all - tf.shape(selected_boxes)[0]]],
|
||||
mode="CONSTANT", constant_values=-1.0)
|
||||
valid_detections = tf.shape(selected_inds)[0]
|
||||
return padded_boxes, padded_scores, padded_classes, valid_detections
|
||||
@staticmethod
|
||||
def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS
|
||||
boxes, classes, scores = x
|
||||
class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
|
||||
scores_inp = tf.reduce_max(scores, -1)
|
||||
selected_inds = tf.image.non_max_suppression(
|
||||
boxes, scores_inp, max_output_size=topk_all, iou_threshold=iou_thres, score_threshold=conf_thres)
|
||||
selected_boxes = tf.gather(boxes, selected_inds)
|
||||
padded_boxes = tf.pad(selected_boxes,
|
||||
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
|
||||
mode="CONSTANT", constant_values=0.0)
|
||||
selected_scores = tf.gather(scores_inp, selected_inds)
|
||||
padded_scores = tf.pad(selected_scores,
|
||||
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
||||
mode="CONSTANT", constant_values=-1.0)
|
||||
selected_classes = tf.gather(class_inds, selected_inds)
|
||||
padded_classes = tf.pad(selected_classes,
|
||||
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
||||
mode="CONSTANT", constant_values=-1.0)
|
||||
valid_detections = tf.shape(selected_inds)[0]
|
||||
return padded_boxes, padded_scores, padded_classes, valid_detections
|
||||
|
||||
|
||||
def xywh2xyxy(xywh):
|
||||
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
||||
x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
|
||||
return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
|
||||
|
||||
|
||||
def representative_dataset_gen():
|
||||
# Representative dataset for use with converter.representative_dataset
|
||||
n = 0
|
||||
for path, img, im0s, vid_cap in dataset:
|
||||
# Get sample input data as a numpy array in a method of your choosing.
|
||||
n += 1
|
||||
def representative_dataset_gen(dataset, ncalib=100):
|
||||
# Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
|
||||
for n, (path, img, im0s, vid_cap) in enumerate(dataset):
|
||||
input = np.transpose(img, [1, 2, 0])
|
||||
input = np.expand_dims(input, axis=0).astype(np.float32)
|
||||
input /= 255.0
|
||||
yield [input]
|
||||
if n >= opt.ncalib:
|
||||
if n >= ncalib:
|
||||
break
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
def run(weights=ROOT / 'yolov5s.pt', # weights path
|
||||
imgsz=(640, 640), # inference size h,w
|
||||
batch_size=1, # batch size
|
||||
dynamic=False, # dynamic batch size
|
||||
):
|
||||
# PyTorch model
|
||||
im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
|
||||
model = attempt_load(weights, map_location=torch.device('cpu'), inplace=True, fuse=False)
|
||||
y = model(im) # inference
|
||||
model.info()
|
||||
|
||||
# TensorFlow model
|
||||
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
|
||||
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
||||
y = tf_model.predict(im) # inference
|
||||
|
||||
# Keras model
|
||||
im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
|
||||
keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
|
||||
keras_model.summary()
|
||||
|
||||
|
||||
def parse_opt():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='cfg path')
|
||||
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='weights path')
|
||||
parser.add_argument('--img-size', nargs='+', type=int, default=[320, 320], help='image size') # height, width
|
||||
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
|
||||
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
||||
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
||||
parser.add_argument('--dynamic-batch-size', action='store_true', help='dynamic batch size')
|
||||
parser.add_argument('--source', type=str, default='../data/coco128.yaml', help='dir of images or data.yaml file')
|
||||
parser.add_argument('--ncalib', type=int, default=100, help='number of calibration images')
|
||||
parser.add_argument('--tfl-int8', action='store_true', dest='tfl_int8', help='export TFLite int8 model')
|
||||
parser.add_argument('--tf-nms', action='store_true', dest='tf_nms', help='TF NMS (without TFLite export)')
|
||||
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
||||
parser.add_argument('--tf-raw-resize', action='store_true', dest='tf_raw_resize',
|
||||
help='use tf.raw_ops.ResizeNearestNeighbor for resize')
|
||||
parser.add_argument('--topk-per-class', type=int, default=100, help='topk per class to keep in NMS')
|
||||
parser.add_argument('--topk-all', type=int, default=100, help='topk for all classes to keep in NMS')
|
||||
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
|
||||
parser.add_argument('--score-thres', type=float, default=0.4, help='score threshold for NMS')
|
||||
parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
|
||||
opt = parser.parse_args()
|
||||
opt.cfg = check_yaml(opt.cfg) # check YAML
|
||||
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
||||
print(opt)
|
||||
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
||||
return opt
|
||||
|
||||
# Input
|
||||
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection
|
||||
|
||||
# Load PyTorch model
|
||||
model = attempt_load(opt.weights, map_location=torch.device('cpu'), inplace=True, fuse=False)
|
||||
model.model[-1].export = False # set Detect() layer export=True
|
||||
y = model(img) # dry run
|
||||
nc = y[0].shape[-1] - 5
|
||||
def main(opt):
|
||||
set_logging()
|
||||
print(colorstr('tf.py: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
|
||||
run(**vars(opt))
|
||||
|
||||
# TensorFlow saved_model export
|
||||
try:
|
||||
print('\nStarting TensorFlow saved_model export with TensorFlow %s...' % tf.__version__)
|
||||
tf_model = tf_Model(opt.cfg, model=model, nc=nc)
|
||||
img = tf.zeros((opt.batch_size, *opt.img_size, 3)) # NHWC Input for TensorFlow
|
||||
|
||||
m = tf_model.model.layers[-1]
|
||||
assert isinstance(m, tf_Detect), "the last layer must be Detect"
|
||||
m.training = False
|
||||
y = tf_model.predict(img)
|
||||
|
||||
inputs = keras.Input(shape=(*opt.img_size, 3), batch_size=None if opt.dynamic_batch_size else opt.batch_size)
|
||||
keras_model = keras.Model(inputs=inputs, outputs=tf_model.predict(inputs))
|
||||
keras_model.summary()
|
||||
path = opt.weights.replace('.pt', '_saved_model') # filename
|
||||
keras_model.save(path, save_format='tf')
|
||||
print('TensorFlow saved_model export success, saved as %s' % path)
|
||||
except Exception as e:
|
||||
print('TensorFlow saved_model export failure: %s' % e)
|
||||
traceback.print_exc(file=sys.stdout)
|
||||
|
||||
# TensorFlow GraphDef export
|
||||
try:
|
||||
print('\nStarting TensorFlow GraphDef export with TensorFlow %s...' % tf.__version__)
|
||||
|
||||
# https://github.com/leimao/Frozen_Graph_TensorFlow
|
||||
full_model = tf.function(lambda x: keras_model(x))
|
||||
full_model = full_model.get_concrete_function(
|
||||
tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
||||
|
||||
frozen_func = convert_variables_to_constants_v2(full_model)
|
||||
frozen_func.graph.as_graph_def()
|
||||
f = opt.weights.replace('.pt', '.pb') # filename
|
||||
tf.io.write_graph(graph_or_graph_def=frozen_func.graph,
|
||||
logdir=os.path.dirname(f),
|
||||
name=os.path.basename(f),
|
||||
as_text=False)
|
||||
|
||||
print('TensorFlow GraphDef export success, saved as %s' % f)
|
||||
except Exception as e:
|
||||
print('TensorFlow GraphDef export failure: %s' % e)
|
||||
traceback.print_exc(file=sys.stdout)
|
||||
|
||||
# TFLite model export
|
||||
if not opt.tf_nms:
|
||||
try:
|
||||
print('\nStarting TFLite export with TensorFlow %s...' % tf.__version__)
|
||||
|
||||
# fp32 TFLite model export ---------------------------------------------------------------------------------
|
||||
# converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
||||
# converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
||||
# converter.allow_custom_ops = False
|
||||
# converter.experimental_new_converter = True
|
||||
# tflite_model = converter.convert()
|
||||
# f = opt.weights.replace('.pt', '.tflite') # filename
|
||||
# open(f, "wb").write(tflite_model)
|
||||
|
||||
# fp16 TFLite model export ---------------------------------------------------------------------------------
|
||||
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
||||
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
||||
# converter.representative_dataset = representative_dataset_gen
|
||||
# converter.target_spec.supported_types = [tf.float16]
|
||||
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
||||
converter.allow_custom_ops = False
|
||||
converter.experimental_new_converter = True
|
||||
tflite_model = converter.convert()
|
||||
f = opt.weights.replace('.pt', '-fp16.tflite') # filename
|
||||
open(f, "wb").write(tflite_model)
|
||||
print('\nTFLite export success, saved as %s' % f)
|
||||
|
||||
# int8 TFLite model export ---------------------------------------------------------------------------------
|
||||
if opt.tfl_int8:
|
||||
# Representative Dataset
|
||||
if opt.source.endswith('.yaml'):
|
||||
with open(check_yaml(opt.source)) as f:
|
||||
data = yaml.load(f, Loader=yaml.FullLoader) # data dict
|
||||
check_dataset(data) # check
|
||||
opt.source = data['train']
|
||||
dataset = LoadImages(opt.source, img_size=opt.img_size, auto=False)
|
||||
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
||||
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
||||
converter.representative_dataset = representative_dataset_gen
|
||||
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
||||
converter.inference_input_type = tf.uint8 # or tf.int8
|
||||
converter.inference_output_type = tf.uint8 # or tf.int8
|
||||
converter.allow_custom_ops = False
|
||||
converter.experimental_new_converter = True
|
||||
converter.experimental_new_quantizer = False
|
||||
tflite_model = converter.convert()
|
||||
f = opt.weights.replace('.pt', '-int8.tflite') # filename
|
||||
open(f, "wb").write(tflite_model)
|
||||
print('\nTFLite (int8) export success, saved as %s' % f)
|
||||
|
||||
except Exception as e:
|
||||
print('\nTFLite export failure: %s' % e)
|
||||
traceback.print_exc(file=sys.stdout)
|
||||
if __name__ == "__main__":
|
||||
opt = parse_opt()
|
||||
main(opt)
|
||||
|
@ -1,6 +1,6 @@
|
||||
# pip install -r requirements.txt
|
||||
|
||||
# base ----------------------------------------
|
||||
# Base ----------------------------------------
|
||||
matplotlib>=3.2.2
|
||||
numpy>=1.18.5
|
||||
opencv-python>=4.1.2
|
||||
@ -11,21 +11,23 @@ torch>=1.7.0
|
||||
torchvision>=0.8.1
|
||||
tqdm>=4.41.0
|
||||
|
||||
# logging -------------------------------------
|
||||
# Logging -------------------------------------
|
||||
tensorboard>=2.4.1
|
||||
# wandb
|
||||
|
||||
# plotting ------------------------------------
|
||||
# Plotting ------------------------------------
|
||||
seaborn>=0.11.0
|
||||
pandas
|
||||
|
||||
# export --------------------------------------
|
||||
# coremltools>=4.1
|
||||
# onnx>=1.9.0
|
||||
# scikit-learn==0.19.2 # for coreml quantization
|
||||
# tensorflow==2.4.1 # for TFLite export
|
||||
# Export --------------------------------------
|
||||
# coremltools>=4.1 # CoreML export
|
||||
# onnx>=1.9.0 # ONNX export
|
||||
# onnx-simplifier>=0.3.6 # ONNX simplifier
|
||||
# scikit-learn==0.19.2 # CoreML quantization
|
||||
# tensorflow>=2.4.1 # TFLite export
|
||||
# tensorflowjs>=3.9.0 # TF.js export
|
||||
|
||||
# extras --------------------------------------
|
||||
# Extras --------------------------------------
|
||||
# Cython # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
|
||||
# pycocotools>=2.0 # COCO mAP
|
||||
# albumentations>=1.0.3
|
||||
|
@ -161,9 +161,15 @@ def emojis(str=''):
|
||||
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
|
||||
|
||||
|
||||
def file_size(file):
|
||||
# Return file size in MB
|
||||
return Path(file).stat().st_size / 1e6
|
||||
def file_size(path):
|
||||
# Return file/dir size (MB)
|
||||
path = Path(path)
|
||||
if path.is_file():
|
||||
return path.stat().st_size / 1E6
|
||||
elif path.is_dir():
|
||||
return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / 1E6
|
||||
else:
|
||||
return 0.0
|
||||
|
||||
|
||||
def check_online():
|
||||
|
Loading…
x
Reference in New Issue
Block a user