reorganize train initialization steps
parent
bc1fd13a7a
commit
c687d5c129
41
train.py
41
train.py
|
@ -161,7 +161,7 @@ def train(hyp, opt, device, tb_writer=None):
|
||||||
|
|
||||||
# DDP mode
|
# DDP mode
|
||||||
if cuda and rank != -1:
|
if cuda and rank != -1:
|
||||||
model = DDP(model, device_ids=[opt.local_rank], output_device=(opt.local_rank))
|
model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)
|
||||||
|
|
||||||
# Trainloader
|
# Trainloader
|
||||||
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
|
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
|
||||||
|
@ -171,12 +171,26 @@ def train(hyp, opt, device, tb_writer=None):
|
||||||
nb = len(dataloader) # number of batches
|
nb = len(dataloader) # number of batches
|
||||||
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
|
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
|
||||||
|
|
||||||
# Testloader
|
# Process 0
|
||||||
if rank in [-1, 0]:
|
if rank in [-1, 0]:
|
||||||
ema.updates = start_epoch * nb // accumulate # set EMA updates
|
ema.updates = start_epoch * nb // accumulate # set EMA updates
|
||||||
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt,
|
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt,
|
||||||
hyp=hyp, augment=False, cache=opt.cache_images, rect=True, rank=-1,
|
hyp=hyp, augment=False, cache=opt.cache_images, rect=True, rank=-1,
|
||||||
world_size=opt.world_size, workers=opt.workers)[0] # only runs on process 0
|
world_size=opt.world_size, workers=opt.workers)[0] # testloader
|
||||||
|
|
||||||
|
if not opt.resume:
|
||||||
|
labels = np.concatenate(dataset.labels, 0)
|
||||||
|
c = torch.tensor(labels[:, 0]) # classes
|
||||||
|
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
|
||||||
|
# model._initialize_biases(cf.to(device))
|
||||||
|
plot_labels(labels, save_dir=log_dir)
|
||||||
|
if tb_writer:
|
||||||
|
# tb_writer.add_hparams(hyp, {}) # causes duplicate https://github.com/ultralytics/yolov5/pull/384
|
||||||
|
tb_writer.add_histogram('classes', c, 0)
|
||||||
|
|
||||||
|
# Anchors
|
||||||
|
if not opt.noautoanchor:
|
||||||
|
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
|
||||||
|
|
||||||
# Model parameters
|
# Model parameters
|
||||||
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
|
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
|
||||||
|
@ -186,21 +200,6 @@ def train(hyp, opt, device, tb_writer=None):
|
||||||
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
|
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
|
||||||
model.names = names
|
model.names = names
|
||||||
|
|
||||||
# Classes and Anchors
|
|
||||||
if rank in [-1, 0] and not opt.resume:
|
|
||||||
labels = np.concatenate(dataset.labels, 0)
|
|
||||||
c = torch.tensor(labels[:, 0]) # classes
|
|
||||||
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
|
|
||||||
# model._initialize_biases(cf.to(device))
|
|
||||||
plot_labels(labels, save_dir=log_dir)
|
|
||||||
if tb_writer:
|
|
||||||
# tb_writer.add_hparams(hyp, {}) # causes duplicate https://github.com/ultralytics/yolov5/pull/384
|
|
||||||
tb_writer.add_histogram('classes', c, 0)
|
|
||||||
|
|
||||||
# Anchors
|
|
||||||
if not opt.noautoanchor:
|
|
||||||
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
|
|
||||||
|
|
||||||
# Start training
|
# Start training
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
nw = max(3 * nb, 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
|
nw = max(3 * nb, 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
|
||||||
|
@ -209,10 +208,8 @@ def train(hyp, opt, device, tb_writer=None):
|
||||||
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
|
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
|
||||||
scheduler.last_epoch = start_epoch - 1 # do not move
|
scheduler.last_epoch = start_epoch - 1 # do not move
|
||||||
scaler = amp.GradScaler(enabled=cuda)
|
scaler = amp.GradScaler(enabled=cuda)
|
||||||
logger.info('Image sizes %g train, %g test' % (imgsz, imgsz_test))
|
logger.info('Image sizes %g train, %g test\nUsing %g dataloader workers\nLogging results to %s\n'
|
||||||
logger.info('Using %g dataloader workers' % dataloader.num_workers)
|
'Starting training for %g epochs...' % (imgsz, imgsz_test, dataloader.num_workers, log_dir, epochs))
|
||||||
logger.info('Starting training for %g epochs...' % epochs)
|
|
||||||
# torch.autograd.set_detect_anomaly(True)
|
|
||||||
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
||||||
model.train()
|
model.train()
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue