Update plot_study_txt() (#1533)

pull/1534/head
Glenn Jocher 2020-11-26 22:18:17 +01:00 committed by GitHub
parent 0f2057ed33
commit c9798ae0e1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 5 additions and 6 deletions

View File

@ -1,13 +1,13 @@
# Plotting utils
import glob
import math
import os
import random
from copy import copy
from pathlib import Path
import cv2
import math
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
@ -218,13 +218,13 @@ def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
plt.savefig('targets.jpg', dpi=200)
def plot_study_txt(f='study.txt', x=None): # from utils.plots import *; plot_study_txt()
def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
# Plot study.txt generated by test.py
fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
ax = ax.ravel()
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
for f in ['study/study_coco_%s.txt' % x for x in ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']]:
for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']]:
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
x = np.arange(y.shape[1]) if x is None else np.array(x)
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
@ -234,7 +234,7 @@ def plot_study_txt(f='study.txt', x=None): # from utils.plots import *; plot_st
j = y[3].argmax() + 1
ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8,
label=Path(f).stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
@ -246,8 +246,7 @@ def plot_study_txt(f='study.txt', x=None): # from utils.plots import *; plot_st
ax2.set_xlabel('GPU Speed (ms/img)')
ax2.set_ylabel('COCO AP val')
ax2.legend(loc='lower right')
plt.savefig('study_mAP_latency.png', dpi=300)
plt.savefig(f.replace('.txt', '.png'), dpi=300)
plt.savefig('test_study.png', dpi=300)
def plot_labels(labels, save_dir=''):