mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
Add autobatch
feature for best batch-size
estimation (#5092)
* Autobatch * fix mem * fix mem2 * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update train.py * print result * Cleanup print result * swap fix in call * to 64 * use total * fix * fix * fix * fix * fix * Update * Update * Update * Update * Update * Update * Update * Cleanup printing * Update final printout * Update autobatch.py * Update autobatch.py * Update autobatch.py
This commit is contained in:
parent
692be757b6
commit
ca19df5f7f
17
train.py
17
train.py
@ -36,6 +36,7 @@ import val # for end-of-epoch mAP
|
||||
from models.experimental import attempt_load
|
||||
from models.yolo import Model
|
||||
from utils.autoanchor import check_anchors
|
||||
from utils.autobatch import check_train_batch_size
|
||||
from utils.datasets import create_dataloader
|
||||
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
|
||||
strip_optimizer, get_latest_run, check_dataset, check_git_status, check_img_size, check_requirements, \
|
||||
@ -131,6 +132,14 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
||||
print(f'freezing {k}')
|
||||
v.requires_grad = False
|
||||
|
||||
# Image size
|
||||
gs = max(int(model.stride.max()), 32) # grid size (max stride)
|
||||
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
|
||||
|
||||
# Batch size
|
||||
if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
|
||||
batch_size = check_train_batch_size(model, imgsz)
|
||||
|
||||
# Optimizer
|
||||
nbs = 64 # nominal batch size
|
||||
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
|
||||
@ -190,11 +199,6 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
||||
|
||||
del ckpt, csd
|
||||
|
||||
# Image sizes
|
||||
gs = max(int(model.stride.max()), 32) # grid size (max stride)
|
||||
nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
|
||||
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
|
||||
|
||||
# DP mode
|
||||
if cuda and RANK == -1 and torch.cuda.device_count() > 1:
|
||||
logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
|
||||
@ -242,6 +246,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
||||
model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
|
||||
|
||||
# Model parameters
|
||||
nl = model.model[-1].nl # number of detection layers (to scale hyps)
|
||||
hyp['box'] *= 3. / nl # scale to layers
|
||||
hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
|
||||
hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
|
||||
@ -440,7 +445,7 @@ def parse_opt(known=False):
|
||||
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
||||
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch.yaml', help='hyperparameters path')
|
||||
parser.add_argument('--epochs', type=int, default=300)
|
||||
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
|
||||
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
|
||||
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
|
||||
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
||||
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
|
||||
|
56
utils/autobatch.py
Normal file
56
utils/autobatch.py
Normal file
@ -0,0 +1,56 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
Auto-batch utils
|
||||
"""
|
||||
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.cuda import amp
|
||||
|
||||
from utils.general import colorstr
|
||||
from utils.torch_utils import profile
|
||||
|
||||
|
||||
def check_train_batch_size(model, imgsz=640):
|
||||
# Check YOLOv5 training batch size
|
||||
with amp.autocast():
|
||||
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
|
||||
|
||||
|
||||
def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
|
||||
# Automatically estimate best batch size to use `fraction` of available CUDA memory
|
||||
# Usage:
|
||||
# import torch
|
||||
# from utils.autobatch import autobatch
|
||||
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
|
||||
# print(autobatch(model))
|
||||
|
||||
prefix = colorstr('autobatch: ')
|
||||
print(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
|
||||
device = next(model.parameters()).device # get model device
|
||||
if device.type == 'cpu':
|
||||
print(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
|
||||
return batch_size
|
||||
|
||||
d = str(device).upper() # 'CUDA:0'
|
||||
t = torch.cuda.get_device_properties(device).total_memory / 1024 ** 3 # (GB)
|
||||
r = torch.cuda.memory_reserved(device) / 1024 ** 3 # (GB)
|
||||
a = torch.cuda.memory_allocated(device) / 1024 ** 3 # (GB)
|
||||
f = t - (r + a) # free inside reserved
|
||||
print(f'{prefix}{d} {t:.3g}G total, {r:.3g}G reserved, {a:.3g}G allocated, {f:.3g}G free')
|
||||
|
||||
batch_sizes = [1, 2, 4, 8, 16]
|
||||
try:
|
||||
img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes]
|
||||
y = profile(img, model, n=3, device=device)
|
||||
except Exception as e:
|
||||
print(f'{prefix}{e}')
|
||||
|
||||
y = [x[2] for x in y if x] # memory [2]
|
||||
batch_sizes = batch_sizes[:len(y)]
|
||||
p = np.polyfit(batch_sizes, y, deg=1) # first degree polynomial fit
|
||||
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
|
||||
print(f'{prefix}Using colorstr(batch-size {b}) for {d} {t * fraction:.3g}G/{t:.3g}G ({fraction * 100:.0f}%)')
|
||||
return b
|
@ -126,7 +126,7 @@ def profile(input, ops, n=10, device=None):
|
||||
_ = (sum([yi.sum() for yi in y]) if isinstance(y, list) else y).sum().backward()
|
||||
t[2] = time_sync()
|
||||
except Exception as e: # no backward method
|
||||
print(e)
|
||||
# print(e) # for debug
|
||||
t[2] = float('nan')
|
||||
tf += (t[1] - t[0]) * 1000 / n # ms per op forward
|
||||
tb += (t[2] - t[1]) * 1000 / n # ms per op backward
|
||||
|
Loading…
x
Reference in New Issue
Block a user