Update autobatch.py (#5538)
* Update autobatch.py * Update autobatch.py * Update autobatch.pypull/5542/head
parent
60e42e16c2
commit
cb18cac33d
utils
|
@ -35,11 +35,12 @@ def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
|
|||
return batch_size
|
||||
|
||||
d = str(device).upper() # 'CUDA:0'
|
||||
t = torch.cuda.get_device_properties(device).total_memory / 1024 ** 3 # (GB)
|
||||
r = torch.cuda.memory_reserved(device) / 1024 ** 3 # (GB)
|
||||
a = torch.cuda.memory_allocated(device) / 1024 ** 3 # (GB)
|
||||
properties = torch.cuda.get_device_properties(device) # device properties
|
||||
t = properties.total_memory / 1024 ** 3 # (GiB)
|
||||
r = torch.cuda.memory_reserved(device) / 1024 ** 3 # (GiB)
|
||||
a = torch.cuda.memory_allocated(device) / 1024 ** 3 # (GiB)
|
||||
f = t - (r + a) # free inside reserved
|
||||
print(f'{prefix}{d} {t:.3g}G total, {r:.3g}G reserved, {a:.3g}G allocated, {f:.3g}G free')
|
||||
print(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
|
||||
|
||||
batch_sizes = [1, 2, 4, 8, 16]
|
||||
try:
|
||||
|
@ -52,5 +53,5 @@ def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
|
|||
batch_sizes = batch_sizes[:len(y)]
|
||||
p = np.polyfit(batch_sizes, y, deg=1) # first degree polynomial fit
|
||||
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
|
||||
print(f'{prefix}Using batch-size {b} for {d} {t * fraction:.3g}G/{t:.3g}G ({fraction * 100:.0f}%)')
|
||||
print(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%)')
|
||||
return b
|
||||
|
|
Loading…
Reference in New Issue