Unify the check point of single and multi GPU
save the model.hyp etc to checkpoint when use multi GPU trainingpull/245/head
parent
bfd51f62f8
commit
cdb9bde181
11
train.py
11
train.py
|
@ -79,7 +79,7 @@ def train(hyp):
|
|||
# Create model
|
||||
model = Model(opt.cfg).to(device)
|
||||
assert model.md['nc'] == nc, '%s nc=%g classes but %s nc=%g classes' % (opt.data, nc, opt.cfg, model.md['nc'])
|
||||
model.names = data_dict['names']
|
||||
|
||||
|
||||
# Image sizes
|
||||
gs = int(max(model.stride)) # grid size (max stride)
|
||||
|
@ -172,6 +172,7 @@ def train(hyp):
|
|||
model.hyp = hyp # attach hyperparameters to model
|
||||
model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou)
|
||||
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
|
||||
model.names = data_dict['names']
|
||||
|
||||
# Class frequency
|
||||
labels = np.concatenate(dataset.labels, 0)
|
||||
|
@ -314,6 +315,14 @@ def train(hyp):
|
|||
# Save model
|
||||
save = (not opt.nosave) or (final_epoch and not opt.evolve)
|
||||
if save:
|
||||
if hasattr(model, 'module'):
|
||||
# Duplicate Model parameters for Multi-GPU save
|
||||
ema.ema.module.nc = model.nc # attach number of classes to model
|
||||
ema.ema.module.hyp = model.hyp # attach hyperparameters to model
|
||||
ema.ema.module.gr = model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou)
|
||||
ema.ema.module.class_weights = model.class_weights # attach class weights
|
||||
ema.ema.module.names = data_dict['names']
|
||||
|
||||
with open(results_file, 'r') as f: # create checkpoint
|
||||
ckpt = {'epoch': epoch,
|
||||
'best_fitness': best_fitness,
|
||||
|
|
Loading…
Reference in New Issue